岛屿问题最容易让人想到BFS或者DFS,但是这道题还真的没有必要,别把简单问题搞复杂了。
遍历每一个空格,遇到岛屿,计算其上下左右的情况,遇到水域或者出界的情况,就可以计算边了。
如图:
C++代码如下:(详细注释)
class Solution {
public:
int direction[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
int islandPerimeter(vector<vector<int>>& grid) {
int result = 0;
for (int i = 0; i < grid.size(); i++) {
for (int j = 0; j < grid[0].size(); j++) {
if (grid[i][j] == 1) {
for (int k = 0; k < 4; k++) { // 上下左右四个方向
int x = i + direction[k][0];
int y = j + direction[k][1]; // 计算周边坐标x,y
if (x < 0 // i在边界上
|| x >= grid.size() // i在边界上
|| y < 0 // j在边界上
|| y >= grid[0].size() // j在边界上
|| grid[x][y] == 0) { // x,y位置是水域
result++;
}
}
}
}
}
return result;
}
};
计算出总的岛屿数量,因为有一对相邻两个陆地,边的总数就减2,那么在计算出相邻岛屿的数量就可以了。
result = 岛屿数量 * 4 - cover * 2;
如图:
C++代码如下:(详细注释)
class Solution {
public:
int islandPerimeter(vector<vector<int>>& grid) {
int sum = 0; // 陆地数量
int cover = 0; // 相邻数量
for (int i = 0; i < grid.size(); i++) {
for (int j = 0; j < grid[0].size(); j++) {
if (grid[i][j] == 1) {
sum++;
// 统计上边相邻陆地
if(i - 1 >= 0 && grid[i - 1][j] == 1) cover++;
// 统计左边相邻陆地
if(j - 1 >= 0 && grid[i][j - 1] == 1) cover++;
// 为什么没统计下边和右边? 因为避免重复计算
}
}
}
return sum * 4 - cover * 2;
}
};
Java:
Python:
Go:
JavaScript: