forked from FangjinhuaWang/IterMVS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
colmap_api.py
389 lines (340 loc) · 15 KB
/
colmap_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import argparse
import cv2
import numpy as np
import os
import shutil
import struct
from typing import Dict, List, NamedTuple, Tuple
# ============================ read_model.py ============================#
class CameraModel(NamedTuple):
model_id: int
model_name: str
num_params: int
class Camera(NamedTuple):
id: int
model: str
width: int
height: int
params: List[float]
class Image(NamedTuple):
id: int
qvec: List[float]
tvec: List[float]
camera_id: int
name: str
point3d_ids: List[int] = []
class Point3D(NamedTuple):
id: int
xyz: List[float]
rgb: List[int]
error: float
image_ids: List[int]
point2d_ids: List[int]
CAMERA_MODELS = {
CameraModel(0, "SIMPLE_PINHOLE", 3),
CameraModel(1, "PINHOLE", 4),
CameraModel(2, "SIMPLE_RADIAL", 4),
CameraModel(3, "RADIAL", 5),
CameraModel(4, "OPENCV", 8),
CameraModel(5, "OPENCV_FISHEYE", 8),
CameraModel(6, "FULL_OPENCV", 12),
CameraModel(7, "FOV", 5),
CameraModel(8, "SIMPLE_RADIAL_FISHEYE", 4),
CameraModel(9, "RADIAL_FISHEYE", 5),
CameraModel(10, "THIN_PRISM_FISHEYE", 12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS])
def read_next_bytes(fid, num_bytes: int, format_char_sequence: str) -> Tuple:
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack("<" + format_char_sequence, data)
def read_cameras_text(path: str) -> Dict[int, Camera]:
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
model_cameras: Dict[int, Camera] = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elements = line.split()
cam_id = int(elements[0])
model = elements[1]
width = int(elements[2])
height = int(elements[3])
params = list(map(float, elements[4:]))
model_cameras[cam_id] = Camera(cam_id, model, width, height, params)
return model_cameras
def read_cameras_binary(path: str) -> Dict[int, Camera]:
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
model_cameras: Dict[int, Camera] = {}
with open(path, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for camera_line_index in range(num_cameras):
camera_properties = read_next_bytes(fid, 24, "iiQQ")
cam_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = list(read_next_bytes(fid, 8 * num_params, "d" * num_params))
model_cameras[cam_id] = Camera(cam_id, model_name, width, height, params)
assert len(model_cameras) == num_cameras
return model_cameras
def read_images_text(path: str) -> List[Image]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
model_images: List[Image] = []
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elements = line.split()
im_id = int(elements[0])
qvec = list(map(float, elements[1:5]))
tvec = list(map(float, elements[5:8]))
cam_id = int(elements[8])
image_name = elements[9]
elements = fid.readline().split()
point3d_ids = list(map(int, elements[2::3]))
model_images.append(Image(im_id, qvec, tvec, cam_id, image_name, point3d_ids))
return model_images
def read_images_binary(path: str) -> List[Image]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
model_images: List[Image] = []
with open(path, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for image_index in range(num_reg_images):
binary_image_properties = read_next_bytes(fid, 64, "idddddddi")
im_id = binary_image_properties[0]
qvec = binary_image_properties[1:5]
tvec = binary_image_properties[5:8]
cam_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points_2d = read_next_bytes(fid, 8, "Q")[0]
x_y_id_s = read_next_bytes(fid, 24 * num_points_2d, "ddq" * num_points_2d)
point3d_ids = list(map(int, x_y_id_s[2::3]))
model_images.append(Image(im_id, qvec, tvec, cam_id, image_name, point3d_ids))
return model_images
def read_points_3d_text(path: str) -> Dict[int, Point3D]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
model_points3d: Dict[int, Point3D] = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elements = line.split()
point_id = int(elements[0])
xyz = list(map(float, elements[1:4]))
rgb = list(map(int, elements[4:7]))
error = float(elements[7])
image_ids = list(map(int, elements[8::2]))
point2d_ids = list(map(int, elements[9::2]))
model_points3d[point_id] = Point3D(point_id, xyz, rgb, error, image_ids, point2d_ids)
return model_points3d
def read_points3d_binary(path: str) -> Dict[int, Point3D]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
model_points3d: Dict[int, Point3D] = {}
with open(path, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
for point_line_index in range(num_points):
binary_point_line_properties = read_next_bytes(fid, 43, "QdddBBBd")
point_id = binary_point_line_properties[0]
xyz = list(binary_point_line_properties[1:4])
rgb = list(binary_point_line_properties[4:7])
error = binary_point_line_properties[7]
track_length = read_next_bytes(fid, 8, "Q")[0]
track_elements = read_next_bytes(fid, 8 * track_length, "ii" * track_length)
image_ids = list(map(int, track_elements[0::2]))
point2d_ids = list(map(int, track_elements[1::2]))
model_points3d[point_id] = Point3D(point_id, xyz, rgb, error, image_ids, point2d_ids)
return model_points3d
def read_model(path: str, ext: str) -> Tuple[Dict[int, Camera], List[Image], Dict[int, Point3D]]:
if ext == ".txt":
model_cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
model_images = read_images_text(os.path.join(path, "images" + ext))
model_points_3d = read_points_3d_text(os.path.join(path, "points3D") + ext)
else:
model_cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
model_images = read_images_binary(os.path.join(path, "images" + ext))
model_points_3d = read_points3d_binary(os.path.join(path, "points3D") + ext)
return model_cameras, model_images, model_points_3d
def quaternion_to_rotation_matrix(qvec: List[float]) -> np.ndarray:
return np.array([
[1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2]])
def main(input_folder, num_src_images, theta0, sigma1, sigma2, sort_by_name):
cameras, images, points3d = read_model(os.path.join(input_folder, "sparse"), ".bin")
num_images = len(images)
param_type: Dict[str, List[str]] = {
"SIMPLE_PINHOLE": ["f", "cx", "cy"],
"PINHOLE": ["fx", "fy", "cx", "cy"],
"SIMPLE_RADIAL": ["f", "cx", "cy", "k"],
"SIMPLE_RADIAL_FISHEYE": ["f", "cx", "cy", "k"],
"RADIAL": ["f", "cx", "cy", "k1", "k2"],
"RADIAL_FISHEYE": ["f", "cx", "cy", "k1", "k2"],
"OPENCV": ["fx", "fy", "cx", "cy", "k1", "k2", "p1", "p2"],
"OPENCV_FISHEYE": ["fx", "fy", "cx", "cy", "k1", "k2", "k3", "k4"],
"FULL_OPENCV": ["fx", "fy", "cx", "cy", "k1", "k2", "p1", "p2", "k3", "k4", "k5", "k6"],
"FOV": ["fx", "fy", "cx", "cy", "omega"],
"THIN_PRISM_FISHEYE": ["fx", "fy", "cx", "cy", "k1", "k2", "p1", "p2", "k3", "k4", "sx1", "sy1"]
}
# intrinsic
intrinsic: Dict[int, np.ndarray] = {}
for camera_id, cam in cameras.items():
params_dict = {key: value for key, value in zip(param_type[cam.model], cam.params)}
if "f" in param_type[cam.model]:
params_dict["fx"] = params_dict["f"]
params_dict["fy"] = params_dict["f"]
i = np.array([
[params_dict["fx"], 0, params_dict["cx"]],
[0, params_dict["fy"], params_dict["cy"]],
[0, 0, 1]
])
intrinsic[camera_id] = i
# extrinsic
extrinsic: List[np.ndarray] = []
for i in range(num_images):
e = np.zeros((4, 4))
e[:3, :3] = quaternion_to_rotation_matrix(images[i].qvec)
e[:3, 3] = images[i].tvec
e[3, 3] = 1
extrinsic.append(e)
# depth range and interval
depth_ranges: List[Tuple[float, float]] = []
for i in range(num_images):
zs = []
for p3d_id in images[i].point3d_ids:
if p3d_id == -1:
continue
transformed: np.ndarray = np.matmul(
extrinsic[i], [points3d[p3d_id].xyz[0], points3d[p3d_id].xyz[1], points3d[p3d_id].xyz[2], 1])
zs.append(transformed[2].item())
zs_sorted = sorted(zs)
# relaxed depth range
depth_min = zs_sorted[int(len(zs) * .01)]
depth_max = zs_sorted[int(len(zs) * .99)]
depth_ranges.append((depth_min, depth_max))
def calc_score(ind1: int, ind2: int) -> float:
id_i = images[ind1].point3d_ids
id_j = images[ind2].point3d_ids
id_intersect = set(id_i) & set(id_j)
cam_center_i = -np.matmul(extrinsic[ind1][:3, :3].transpose(), extrinsic[ind1][:3, 3:4])[:, 0]
cam_center_j = -np.matmul(extrinsic[ind2][:3, :3].transpose(), extrinsic[ind2][:3, 3:4])[:, 0]
view_score_ = 0.0
for pid in id_intersect:
if pid == -1:
continue
p = points3d[pid].xyz
theta = (180 / np.pi) * np.arccos(
np.dot(cam_center_i - p, cam_center_j - p) / np.linalg.norm(cam_center_i - p) / np.linalg.norm(
cam_center_j - p))
view_score_ += np.exp(-(theta - theta0) * (theta - theta0) / (
2 * (sigma1 if theta <= theta0 else sigma2) ** 2))
return view_score_
# view selection
score = np.zeros((num_images, num_images))
for i in range(num_images):
for j in range(i + 1, num_images):
s = calc_score(i, j)
score[i, j] = s
score[j, i] = s
if num_src_images < 0:
num_src_images = num_images
view_sel: List[List[Tuple[int, float]]] = []
for i in range(num_images):
sorted_score = np.argsort(score[i])[::-1]
view_sel.append([(k, score[i, k]) for k in sorted_score[:num_src_images]])
if sort_by_name:
remap = []
for i in range(num_images):
remap.append((images[i].name, i))
remap.sort(key=(lambda x:x[0]))
remap = { x[1]: i for i, x in enumerate(remap) }
else:
remap = {}
# write
cam_dir = os.path.join(input_folder, "cams_1")
os.makedirs(cam_dir, exist_ok=True)
for i in range(num_images):
with open(os.path.join(cam_dir, "%08d_cam.txt" % remap.get(i, i)), "w") as f:
f.write("extrinsic\n")
for j in range(4):
for k in range(4):
f.write(str(extrinsic[i][j, k]) + " ")
f.write("\n")
f.write("\nintrinsic\n")
for j in range(3):
for k in range(3):
f.write(str(intrinsic[images[i].camera_id][j, k]) + " ")
f.write("\n")
f.write("\n%f %f \n" % (depth_ranges[i][0], depth_ranges[i][1]))
with open(os.path.join(input_folder, "pair.txt"), "w") as f:
f.write("%d\n" % len(images))
for i, sorted_score in enumerate(view_sel):
f.write("%d\n%d " % (remap.get(i, i), len(sorted_score)))
for image_id, s in sorted_score:
f.write("%d %f " % (remap.get(image_id, image_id), s))
f.write("\n")
for i in range(len(images)):
target_name = "%08d.jpg" % remap.get(i, i)
if images[i].name == target_name:
continue
shutil.copyfile(os.path.join(input_folder, "images", images[i].name), os.path.join(input_folder, "images", target_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert colmap results into input for PatchmatchNet")
parser.add_argument('--input', '-i', type=str, required=True)
parser.add_argument('--n_views', type=int, default=5)
parser.add_argument('--sort_by_name', '-sort', action='store_true', default=False)
parser.add_argument('--theta0', type=float, default=5)
parser.add_argument('--sigma1', type=float, default=1)
parser.add_argument('--sigma2', type=float, default=10)
args = parser.parse_args()
main(args.input, args.n_views - 1, args.theta0, args.sigma1, args.sigma2, args.sort_by_name)