-
Notifications
You must be signed in to change notification settings - Fork 5
152 lines (148 loc) · 5.9 KB
/
dockerize_ollama_models.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
name: 'Dockerize Ollama models'
on:
workflow_dispatch:
inputs:
ollama_version:
description: 'Ollama version'
required: true
default: 'latest'
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
models: [
model: {
name: 'all-minilm',
tag: '22m',
description: 'Embedding models on very large sentence level datasets'
},
model: {
name: 'bge-m3',
tag: '567m',
description: 'BGE-M3 is a new model from BAAI distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity'
},
model: {
name: 'codegemma',
tag: '7b',
description: 'CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following'
},
model: {
name: 'deepseek-coder',
tag: '1.3b',
description: 'DeepSeek Coder is a capable coding model trained on two trillion code and natural language tokens'
},
model: {
name: 'gemma2',
tag: '2b',
description: 'Google Gemma 2 is a high-performing and efficient model available in three sizes: 2B, 9B, and 27B'
},
model: {
name: 'llama3.1',
tag: '8b',
description: 'Llama 3.1 is a new state-of-the-art model from Meta available in 8B, 70B and 405B parameter sizes'
},
model: {
name: 'llama3.2',
tag: '1b',
description: 'Llama 3.2 of Meta goes small with 1B and 3B models.'
},
model: {
name: 'llama3.2',
tag: '3b',
description: 'Llama 3.2 of Meta goes small with 1B and 3B models.'
},
model: {
name: 'llava',
tag: '7b',
description: 'LLaVA is a novel end-to-end trained large multimodal model that combines a vision encoder and Vicuna for general-purpose visual and language understanding. Updated to version 1.6'
},
model: {
name: 'llava-phi3',
tag: '3.8b',
description: 'A new small LLaVA model fine-tuned from Phi 3 Mini'
},
model: {
name: 'mistral',
tag: '7b',
description: 'The 7B model released by Mistral AI, updated to version 0.3'
},
model: {
name: 'moondream',
tag: '1.8b',
description: 'moondream2 is a small vision language model designed to run efficiently on edge devices'
},
model: {
name: 'mxbai-embed-large',
tag: '335m',
description: 'State-of-the-art large embedding model from mixedbread.ai'
},
model: {
name: 'nomic-embed-text',
tag: 'v1.5',
description: 'A high-performing open embedding model with a large token context window'
},
model: {
name: 'phi3',
tag: '3.8b',
description: 'Phi-3 is a family of lightweight 3B (Mini) and 14B (Medium) state-of-the-art open models by Microsoft'
},
model: {
name: 'phi3.5',
tag: '3.8b',
description: 'A lightweight AI model with 3.8 billion parameters with performance overtaking similarly and larger sized models'
},
model: {
name: 'qwen2',
tag: '0.5b',
description: 'Qwen2 is a new series of large language models from Alibaba group'
},
model: {
name: 'qwen2.5',
tag: '0.5b-instruct',
description: 'Qwen2.5 models are pretrained on Alibaba latest large-scale dataset, encompassing up to 18 trillion tokens. The model supports up to 128K tokens and has multilingual support'
},
model: {
name: 'qwen2.5-coder',
tag: '1.5b',
description: 'The latest series of Code-Specific Qwen models, with significant improvements in code generation, code reasoning, and code fixing.'
},
model: {
name: 'snowflake-arctic-embed',
tag: '335m',
description: 'A suite of text embedding models by Snowflake, optimized for performance'
},
model: {
name: 'starcoder2',
tag: '3b',
description: 'StarCoder2 is the next generation of transparently trained open code LLMs that comes in three sizes: 3B, 7B and 15B parameters'
},
model: {
name: 'reader-lm',
tag: '1.5b',
description: 'A series of models that convert HTML content to Markdown content, which is useful for content conversion tasks'
},
model: {
name: 'bespoke-minicheck',
tag: '7b',
description: 'A SOTA fact-checking model developed by Bespoke Labs'
}
]
steps:
- name: Free Disk Space
uses: jlumbroso/free-disk-space@54081f138730dfa15788a46383842cd2f914a1be # v1.3.1
with:
tool-cache: true
- name: Checkout repository
uses: actions/checkout@v4
- name: Build and Deploy Docker Image
uses: ./
with:
docker_username: ${{ secrets.DOCKER_USERNAME }}
docker_password: ${{ secrets.DOCKER_PASSWORD }}
docker_repository: ${{ matrix.models.model.name }}
docker_tag: ${{ github.event.inputs.ollama_version }}-${{ matrix.models.model.tag }}
model_name: ${{ matrix.models.model.name }}
model_tag: ${{ matrix.models.model.tag }}
ollama_version: ${{ github.event.inputs.ollama_version }}
short_description: ${{ matrix.models.model.description }}