-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.h
700 lines (596 loc) · 11.7 KB
/
linalg.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*
* Copyright (c) 2016 Ilya Kaliman
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Project: https://github.com/ilyak/linalg
*/
#ifndef LINALG_H_INCLUDED
#define LINALG_H_INCLUDED
#include <math.h>
#ifdef __cplusplus
namespace linalg {
#endif
#ifdef LINALG_SINGLE_PRECISION
typedef float real;
#else /* LINALG_SINGLE_PRECISION */
typedef double real;
#endif /* LINALG_SINGLE_PRECISION */
typedef struct {
real x, y;
} v2;
typedef struct {
real x, y, z;
} v3;
typedef struct {
real xx, xy;
real yx, yy;
} m22;
typedef struct {
real xx, xy, xz;
real yx, yy, yz;
real zx, zy, zz;
} m33;
typedef struct {
real w, x, y, z;
} q4;
static inline int
realeq(real a, real b, real eps)
{
return (fabs((double)(a - b)) < (double)eps);
}
static inline v2
v2new(real x, real y)
{
v2 v = { x, y };
return (v);
}
static inline v2
v2zero(void)
{
return v2new(0, 0);
}
static inline real
v2idx(v2 v, unsigned i)
{
return ((real *)&v)[i];
}
static inline v2
v2add(v2 a, v2 b)
{
return v2new(a.x + b.x, a.y + b.y);
}
static inline v2
v2sub(v2 a, v2 b)
{
return v2new(a.x - b.x, a.y - b.y);
}
static inline v2
v2neg(v2 v)
{
return v2new(-v.x, -v.y);
}
static inline v2
v2mul(v2 v, real s)
{
return v2new(v.x * s, v.y * s);
}
static inline v2
v2div(v2 v, real s)
{
return v2new(v.x / s, v.y / s);
}
static inline real
v2dot(v2 a, v2 b)
{
return (a.x * b.x + a.y * b.y);
}
static inline real
v2lensq(v2 v)
{
return v2dot(v, v);
}
static inline real
v2len(v2 v)
{
return ((real)sqrt((double)v2lensq(v)));
}
static inline v2
v2unit(v2 v)
{
return v2div(v, v2len(v));
}
static inline real
v2distsq(v2 a, v2 b)
{
return v2lensq(v2sub(a, b));
}
static inline real
v2dist(v2 a, v2 b)
{
return v2len(v2sub(a, b));
}
static inline int
v2eq(v2 a, v2 b, real eps)
{
if (!realeq(a.x, b.x, eps)) return (0);
if (!realeq(a.y, b.y, eps)) return (0);
return (1);
}
static inline v3
v3new(real x, real y, real z)
{
v3 v = { x, y, z };
return (v);
}
static inline v3
v3zero(void)
{
return v3new(0, 0, 0);
}
static inline real
v3idx(v3 v, unsigned i)
{
return ((real *)&v)[i];
}
static inline v3
v3add(v3 a, v3 b)
{
return v3new(a.x + b.x, a.y + b.y, a.z + b.z);
}
static inline v3
v3sub(v3 a, v3 b)
{
return v3new(a.x - b.x, a.y - b.y, a.z - b.z);
}
static inline v3
v3neg(v3 v)
{
return v3new(-v.x, -v.y, -v.z);
}
static inline v3
v3mul(v3 v, real s)
{
return v3new(v.x * s, v.y * s, v.z * s);
}
static inline v3
v3div(v3 v, real s)
{
return v3new(v.x / s, v.y / s, v.z / s);
}
static inline v3
v3cross(v3 a, v3 b)
{
return v3new(a.y * b.z - a.z * b.y,
a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x);
}
static inline real
v3dot(v3 a, v3 b)
{
return (a.x * b.x + a.y * b.y + a.z * b.z);
}
static inline real
v3lensq(v3 v)
{
return v3dot(v, v);
}
static inline real
v3len(v3 v)
{
return ((real)sqrt((double)v3lensq(v)));
}
static inline v3
v3unit(v3 v)
{
return v3div(v, v3len(v));
}
static inline real
v3distsq(v3 a, v3 b)
{
return v3lensq(v3sub(a, b));
}
static inline real
v3dist(v3 a, v3 b)
{
return v3len(v3sub(a, b));
}
static inline int
v3eq(v3 a, v3 b, real eps)
{
if (!realeq(a.x, b.x, eps)) return (0);
if (!realeq(a.y, b.y, eps)) return (0);
if (!realeq(a.z, b.z, eps)) return (0);
return (1);
}
static inline m22
m22new(real xx, real xy, real yx, real yy)
{
m22 m = { xx, xy, yx, yy };
return (m);
}
static inline m22
m22zero(void)
{
return m22new(0, 0, 0, 0);
}
static inline real
m22idx(m22 m, unsigned i, unsigned j)
{
return ((real *)&m)[2*i+j];
}
static inline v2
m22rowx(m22 m)
{
return v2new(m.xx, m.xy);
}
static inline v2
m22rowy(m22 m)
{
return v2new(m.yx, m.yy);
}
static inline v2
m22colx(m22 m)
{
return v2new(m.xx, m.yx);
}
static inline v2
m22coly(m22 m)
{
return v2new(m.xy, m.yy);
}
static inline m22
m22ident(void)
{
return m22new(1, 0, 0, 1);
}
static inline m22
m22rot(real angle)
{
real c = (real)cos((double)angle);
real s = (real)sin((double)angle);
return m22new(c, -s, s, c);
}
static inline m22
m22add(m22 a, m22 b)
{
return m22new(a.xx + b.xx, a.xy + b.xy, a.yx + b.yx, a.yy + b.yy);
}
static inline m22
m22sub(m22 a, m22 b)
{
return m22new(a.xx - b.xx, a.xy - b.xy, a.yx - b.yx, a.yy - b.yy);
}
static inline m22
m22neg(m22 m)
{
return m22new(-m.xx, -m.xy, -m.yx, -m.yy);
}
static inline m22
m22mul(m22 m, real s)
{
return m22new(m.xx * s, m.xy * s, m.yx * s, m.yy * s);
}
static inline m22
m22div(m22 m, real s)
{
return m22mul(m, (real)1.0 / s);
}
static inline m22
m22trans(m22 m)
{
return m22new(m.xx, m.yx, m.xy, m.yy);
}
static inline v2
m22v2(m22 m, v2 v)
{
return v2new(m.xx * v.x + m.xy * v.y,
m.yx * v.x + m.yy * v.y);
}
static inline m22
m22m22(m22 a, m22 b)
{
return m22new(a.xx * b.xx + a.xy * b.yx,
a.xx * b.xy + a.xy * b.yy,
a.yx * b.xx + a.yy * b.yx,
a.yx * b.xy + a.yy * b.yy);
}
static inline real
m22trace(m22 m)
{
return (m.xx + m.yy);
}
static inline real
m22det(m22 m)
{
return (m.xx * m.yy - m.xy * m.yx);
}
static inline m22
m22inv(m22 m)
{
m22 i = m22new(m.yy, -m.xy, -m.yx, m.xx);
return m22div(i, m22det(m));
}
static inline v2
m22solve(m22 a, v2 b)
{
return v2new((a.xy*b.y - a.yy*b.x) / (a.xy*a.yx - a.xx*a.yy),
(a.yx*b.x - a.xx*b.y) / (a.xy*a.yx - a.xx*a.yy));
}
static inline int
m22eq(m22 a, m22 b, real eps)
{
if (!realeq(a.xx, b.xx, eps)) return (0);
if (!realeq(a.xy, b.xy, eps)) return (0);
if (!realeq(a.yx, b.yx, eps)) return (0);
if (!realeq(a.yy, b.yy, eps)) return (0);
return (1);
}
static inline m33
m33new(real xx, real xy, real xz,
real yx, real yy, real yz,
real zx, real zy, real zz)
{
m33 m = { xx, xy, xz, yx, yy, yz, zx, zy, zz };
return (m);
}
static inline m33
m33zero(void)
{
return m33new(0, 0, 0, 0, 0, 0, 0, 0, 0);
}
static inline real
m33idx(m33 m, unsigned i, unsigned j)
{
return ((real *)&m)[3*i+j];
}
static inline v3
m33rowx(m33 m)
{
return v3new(m.xx, m.xy, m.xz);
}
static inline v3
m33rowy(m33 m)
{
return v3new(m.yx, m.yy, m.yz);
}
static inline v3
m33rowz(m33 m)
{
return v3new(m.zx, m.zy, m.zz);
}
static inline v3
m33colx(m33 m)
{
return v3new(m.xx, m.yx, m.zx);
}
static inline v3
m33coly(m33 m)
{
return v3new(m.xy, m.yy, m.zy);
}
static inline v3
m33colz(m33 m)
{
return v3new(m.xz, m.yz, m.zz);
}
static inline m33
m33ident(void)
{
return m33new(1, 0, 0, 0, 1, 0, 0, 0, 1);
}
static inline m33
m33rotx(real angle)
{
real c = (real)cos((double)angle);
real s = (real)sin((double)angle);
return m33new(1, 0, 0, 0, c, -s, 0, s, c);
}
static inline m33
m33roty(real angle)
{
real c = (real)cos((double)angle);
real s = (real)sin((double)angle);
return m33new(c, 0, s, 0, 1, 0, -s, 0, c);
}
static inline m33
m33rotz(real angle)
{
real c = (real)cos((double)angle);
real s = (real)sin((double)angle);
return m33new(c, -s, 0, s, c, 0, 0, 0, 1);
}
static inline m33
m33add(m33 a, m33 b)
{
return m33new(a.xx + b.xx, a.xy + b.xy, a.xz + b.xz,
a.yx + b.yx, a.yy + b.yy, a.yz + b.yz,
a.zx + b.zx, a.zy + b.zy, a.zz + b.zz);
}
static inline m33
m33sub(m33 a, m33 b)
{
return m33new(a.xx - b.xx, a.xy - b.xy, a.xz - b.xz,
a.yx - b.yx, a.yy - b.yy, a.yz - b.yz,
a.zx - b.zx, a.zy - b.zy, a.zz - b.zz);
}
static inline m33
m33neg(m33 m)
{
return m33new(-m.xx, -m.xy, -m.xz,
-m.yx, -m.yy, -m.yz,
-m.zx, -m.zy, -m.zz);
}
static inline m33
m33mul(m33 m, real s)
{
return m33new(m.xx * s, m.xy * s, m.xz * s,
m.yx * s, m.yy * s, m.yz * s,
m.zx * s, m.zy * s, m.zz * s);
}
static inline m33
m33div(m33 m, real s)
{
return m33mul(m, (real)1.0 / s);
}
static inline m33
m33trans(m33 m)
{
return m33new(m.xx, m.yx, m.zx, m.xy, m.yy, m.zy, m.xz, m.yz, m.zz);
}
static inline v3
m33v3(m33 m, v3 v)
{
return v3new(m.xx * v.x + m.xy * v.y + m.xz * v.z,
m.yx * v.x + m.yy * v.y + m.yz * v.z,
m.zx * v.x + m.zy * v.y + m.zz * v.z);
}
static inline m33
m33m33(m33 a, m33 b)
{
return m33new(a.xx * b.xx + a.xy * b.yx + a.xz * b.zx,
a.xx * b.xy + a.xy * b.yy + a.xz * b.zy,
a.xx * b.xz + a.xy * b.yz + a.xz * b.zz,
a.yx * b.xx + a.yy * b.yx + a.yz * b.zx,
a.yx * b.xy + a.yy * b.yy + a.yz * b.zy,
a.yx * b.xz + a.yy * b.yz + a.yz * b.zz,
a.zx * b.xx + a.zy * b.yx + a.zz * b.zx,
a.zx * b.xy + a.zy * b.yy + a.zz * b.zy,
a.zx * b.xz + a.zy * b.yz + a.zz * b.zz);
}
static inline real
m33trace(m33 m)
{
return (m.xx + m.yy + m.zz);
}
static inline real
m33det(m33 m)
{
return (m.xx * m.yy * m.zz + m.xy * m.yz * m.zx +
m.yx * m.zy * m.xz - m.xz * m.yy * m.zx -
m.xx * m.yz * m.zy - m.xy * m.yx * m.zz);
}
static inline m33
m33inv(m33 m)
{
m33 i = m33new(m.yy * m.zz - m.yz * m.zy,
m.zy * m.xz - m.zz * m.xy,
m.xy * m.yz - m.xz * m.yy,
m.yz * m.zx - m.yx * m.zz,
m.zz * m.xx - m.zx * m.xz,
m.xz * m.yx - m.xx * m.yz,
m.yx * m.zy - m.yy * m.zx,
m.zx * m.xy - m.zy * m.xx,
m.xx * m.yy - m.xy * m.yx);
return m33div(i, m33det(m));
}
static inline v3
m33solve(m33 a, v3 b)
{
real d = m33det(a);
real dx = m33det(m33new(b.x,a.xy,a.xz,b.y,a.yy,a.yz,b.z,a.zy,a.zz));
real dy = m33det(m33new(a.xx,b.x,a.xz,a.yx,b.y,a.yz,a.zx,b.z,a.zz));
real dz = m33det(m33new(a.xx,a.xy,b.x,a.yx,a.yy,b.y,a.zx,a.zy,b.z));
return v3new(dx/d, dy/d, dz/d);
}
static inline int
m33eq(m33 a, m33 b, real eps)
{
if (!realeq(a.xx, b.xx, eps)) return (0);
if (!realeq(a.xy, b.xy, eps)) return (0);
if (!realeq(a.xz, b.xz, eps)) return (0);
if (!realeq(a.yx, b.yx, eps)) return (0);
if (!realeq(a.yy, b.yy, eps)) return (0);
if (!realeq(a.yz, b.yz, eps)) return (0);
if (!realeq(a.zx, b.zx, eps)) return (0);
if (!realeq(a.zy, b.zy, eps)) return (0);
if (!realeq(a.zz, b.zz, eps)) return (0);
return (1);
}
static inline q4
q4new(real w, real x, real y, real z)
{
q4 q = { w, x, y, z };
return (q);
}
static inline q4
q4zero(void)
{
return q4new(0, 0, 0, 0);
}
static inline real
q4idx(q4 q, unsigned i)
{
return ((real *)&q)[i];
}
static inline q4
q4add(q4 a, q4 b)
{
return q4new(a.w + b.w, a.x + b.x, a.y + b.y, a.z + b.z);
}
static inline q4
q4sub(q4 a, q4 b)
{
return q4new(a.w - b.w, a.x - b.x, a.y - b.y, a.z - b.z);
}
static inline q4
q4neg(q4 q)
{
return q4new(-q.w, -q.x, -q.y, -q.z);
}
static inline q4
q4mul(q4 q, real s)
{
return q4new(q.w * s, q.x * s, q.y * s, q.z * s);
}
static inline q4
q4div(q4 q, real s)
{
return q4new(q.w / s, q.x / s, q.y / s, q.z / s);
}
static inline q4
q4conj(q4 q)
{
return q4new(q.w, -q.x, -q.y, -q.z);
}
static inline q4
q4q4(q4 a, q4 b)
{
return q4new(a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z,
a.w*b.x + a.x*b.w + a.y*b.z - a.z*b.y,
a.w*b.y - a.x*b.z + a.y*b.w + a.z*b.x,
a.w*b.z + a.x*b.y - a.y*b.x + a.z*b.w);
}
static inline real
q4normsq(q4 q)
{
return (q.w*q.w + q.x*q.x + q.y*q.y + q.z*q.z);
}
static inline real
q4norm(q4 q)
{
return ((real)sqrt((double)q4normsq(q)));
}
static inline int
q4eq(q4 a, q4 b, real eps)
{
if (!realeq(a.w, b.w, eps)) return (0);
if (!realeq(a.x, b.x, eps)) return (0);
if (!realeq(a.y, b.y, eps)) return (0);
if (!realeq(a.z, b.z, eps)) return (0);
return (1);
}
#ifdef __cplusplus
} /* namespace linalg */
#endif
#endif /* LINALG_H_INCLUDED */