-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path__init__.py
288 lines (242 loc) · 9.81 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__)))
import yaml
import logging
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.cuda import amp
from tools.datasets import create_dataloader, preprocess
from tqdm import tqdm
import math
import numpy as np
import time
import evaluate
from tools.general import (set_logging,
init_seeds,
check_dataset,
check_img_size,
torch_distributed_zero_first,
plot_labels,
labels_to_class_weights,
compute_loss,
plot_images,
fitness,
check_anchors
)
from tools.torch_utils import select_device, ModelEMA
logger = logging.getLogger(__name__)
class obj(object):
def __init__(self, d):
for a, b in d.items():
if isinstance(b, (list, tuple)):
setattr(self, a, [obj(x) if isinstance(x, dict) else x for x in b])
else:
setattr(self, a, obj(b) if isinstance(b, dict) else b)
def train(modelWrapper, data, hyp, opt, device):
model = modelWrapper.model
ckpt = modelWrapper.config['ckpt']
logger.info(f'Hyperparameters {hyp}')
log_dir = opt.modelPath
wdir = log_dir + '/weights'
os.makedirs(wdir, exist_ok=True)
last = wdir + '/last.pt'
best = wdir + '/best.pt'
results_file = log_dir + '/results.txt'
epochs, batch_size, total_batch_size, weights, rank = \
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
with open(log_dir + '/hyp-train.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(log_dir + '/opt-train.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
cuda = device.type != 'cpu'
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader)
with torch_distributed_zero_first(rank):
check_dataset(data_dict)
train_path = data_dict['train']
test_path = data_dict['val']
nc, names = (int(data_dict['nc']), data_dict['names'])
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)
# Optimizer
nbs = 64
accumulate = max(round(nbs / total_batch_size), 1)
hyp['weight_decay'] *= total_batch_size * accumulate / nbs
pg0, pg1, pg2 = [], [], []
for k, v in model.named_parameters():
v.requires_grad = True
if '.bias' in k:
pg2.append(v)
elif '.weight' in k and '.bn' not in k:
pg1.append(v)
else:
pg0.append(v)
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})
optimizer.add_param_group({'params': pg2})
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
start_epoch, best_fitness = 0, 0.0
# Optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# Results
if ckpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(ckpt['training_results'])
# Epochs
start_epoch = ckpt['epoch'] + 1
if epochs < start_epoch:
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch']
del ckpt
# Image sizes
gs = int(max(model.stride))
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]
# Exponential moving average
ema = ModelEMA(model)
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max()
nb = len(dataloader)
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
ema.updates = start_epoch * nb // accumulate
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0])
plot_labels(labels, save_dir=log_dir)
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
# Model parameters
hyp['cls'] *= nc / 80.
model.nc = nc
model.hyp = hyp
model.gr = 1.0
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)
model.names = names
# Start training
t0 = time.time()
nw = max(round(hyp['warmup_epochs'] * nb), 1e3)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda)
logger.info('Image sizes %g train, %g test\n'
'Using %g dataloader workers\nLogging results to %s\n'
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
for epoch in range(start_epoch, epochs):
logger.info('Epoch: ' + str(epoch))
model.train()
mloss = torch.zeros(4, device=device) # mean losses
pbar = enumerate(dataloader)
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar:
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
# Forward
with amp.autocast(enabled=cuda):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
if rank != -1:
loss *= opt.world_size # gradient averaged between devices in DDP mode
# Backward
scaler.scale(loss).backward()
# Optimize
if ni % accumulate == 0:
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
# Print
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
# Plot
if ni < 3:
f = str(('log_dir/train_batch%g.jpg' % ni)) # filename
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
# end batch ------------------------------------------------------------------------------------------------
logger.info(s)
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
scheduler.step()
# DDP process 0 or single-GPU
# mAP
if ema:
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
final_epoch = epoch + 1 == epochs
results, maps, times = evaluate.test(opt.data,
batch_size=total_batch_size,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=dataloader,
save_dir=log_dir,
plots=epoch == 0 or final_epoch)
# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, [email protected], [email protected], val_loss(box, obj, cls)
# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]]
if fi > best_fitness:
best_fitness = fi
logger.info('Current Best Map: ' + str(fi))
# Save model
with open(results_file, 'r') as f: # create checkpoint
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': ema.ema,
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
return imgsz
# end training
def main(data, model, args):
opt = obj({})
opt.total_batch_size = 16 if not hasattr(args, 'batch_size') else args.batchSize
opt.epochs = 300 if not hasattr(args, 'epochs') else args.epochs
opt.batch_size = opt.total_batch_size
opt.world_size = 1
opt.global_rank = -1
opt.hyp = os.path.join(os.path.dirname(__file__), 'config/hyp.scratch.yaml')
opt.device = ''
opt.weights = 'yolov5s.pt'
opt.single_cls = False
opt.modelPath = args.modelPath
opt.img_size = model.config['img_size']
set_logging(opt.global_rank)
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))
device = select_device(opt.device, batch_size=opt.batch_size)
logger.info(opt)
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.FullLoader)
dataconfig = preprocess(data)
model.cfg = obj({})
model.cfg.data = opt.data = dataconfig
imgsz = train(model, data, hyp, opt, device)
model.cfg.imgsz = imgsz
sys.path.pop()
return model