forked from jrcastropy/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_config.py
68 lines (57 loc) · 3.74 KB
/
main_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
### MAIN CONFIG
# This config is based to coco128
# path to the images and labels
images_path = "D:/Repositories/Impulseai/t-raj/dataset/coco128/images/train2017"
labels_path = "D:/Repositories/Impulseai/t-raj/dataset/coco128/labels/train2017"
# file name and full path to where to save json files of cocoformat
coco_train = "D:/Repositories/Impulseai/t-raj/centernet repos/mm-detection/coco128-to-json/coco_train.json"
coco_val = "D:/Repositories/Impulseai/t-raj/centernet repos/mm-detection/coco128-to-json/coco_val.json"
coco_eval = "D:/Repositories/Impulseai/t-raj/centernet repos/mm-detection/coco128-to-json/coco_eval.json"
# classes
class_names = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush',)
# number of classes
num_class = 80
# palettes for bounding boxes
palettes = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230),
(106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70),
(0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0),
(175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255),
(0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157),
(110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118),
(255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182),
(0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255),
(78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255),
(134, 134, 103), (145, 148, 174), (255, 208, 186),
(197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255),
(151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105),
(166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149),
(179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205),
(147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0),
(119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88),
(95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118),
(219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15),
(127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0),
(95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122),
(191, 162, 208)]
# path for pretrained model, you can comment if you want it to be automatically downloaded and start from scratch
# this one is trained using coco dataset
pretrained_model_path = "D:/Repositories/Impulseai/t-raj/centernet repos/mm-detection/centernet_resnet18_dcnv2_140e_coco_20210702_155131-c8cd631f.pth"
# default config to run for training
model_config = "/configs/user_config/centernet_resnet18_dcnv2_140e_coco.py"
# random seed
seed = 1
# Working Directory, where we will save the models, logs and configs
# if None, it will create a dir called 'work_dir'
work_dir = None
# splits of training, validation and evaluation
training_split = 0.7
validation_split = 0.2
evaluation_split = 0.1