-
Notifications
You must be signed in to change notification settings - Fork 1
/
Monoid.v
637 lines (514 loc) · 16.8 KB
/
Monoid.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
Require Import Monad.
Require Import PermutSetoid.
Require Import Sorting.Permutation.
Require Import Sorting.PermutEq. (* Standard library *)
(* A partial commutative monoid is a monoid (1,m) with an undefined element 0. *)
Class PCM A :=
{ one : A
; zero : A
; m : A -> A -> A }.
Notation "⊥" := zero.
Notation "⊤" := one.
Notation "a ∙ b" := (m a b) (left associativity, at level 20).
Class PCM_Laws A `{PCM A} :=
{ M_unit : forall a, a ∙ ⊤ = a
; M_assoc : forall a b c, a ∙ (b ∙ c) = (a ∙ b) ∙ c
; M_comm : forall a b, a ∙ b = b ∙ a
; M_absorb : forall a, a ∙ ⊥ = ⊥
}.
Hint Resolve M_unit M_assoc M_comm M_absorb.
(****************************)
(* Interpretable type class *)
(****************************)
Class Translate (A B : Type) := { translate : A -> B }.
Notation "[[ b ]]" := (translate b).
(**********************************)
(* Lift a partial monoid to a PCM *)
(**********************************)
Class PPCM A :=
{ one' : A
; m' : A -> A -> option A }.
Class PPCM_Laws A `{PPCM A} :=
{ PMonoid_unit : forall a, m' a one' = Some a ;
PMonoid_assoc : forall a b c, (do x ← m' b c; m' a x) = (do x ← m' a b; m' x c) ;
PMonoid_comm : forall a b, m' a b = m' b a
}.
Instance PPCM_to_PCM A `{PPCM A} : PCM (option A) :=
{ one := Some one'
; zero := None
; m := fun a b => do x ← a;
do y ← b;
m' x y
}.
Instance PPCM_to_PCM_Laws A `{PPCM_Laws A} : PCM_Laws (option A).
Proof.
split.
- destruct a; simpl; auto. apply PMonoid_unit.
- destruct a as [a | ], b as [b | ], c as [c | ]; simpl; auto.
* apply PMonoid_assoc.
* destruct (m' a b); auto.
- destruct a as [a | ], b as [b | ]; simpl; auto.
apply PMonoid_comm.
- destruct a; simpl; auto.
Qed.
(*******************)
(* CMonoid Section *)
(*******************)
Section CMonoid.
Variable A : Type.
Variable PCM_A : `{PCM A}.
Variable PCM_Laws_A : `{PCM_Laws A}.
(**************************************)
(* Basic consequences of CMonoid Laws *)
(**************************************)
Lemma M_unit_l : forall a, ⊤ ∙ a = a.
Proof. intros. rewrite M_comm. auto. Defined.
Hint Resolve M_unit_l.
Lemma M_comm_assoc : forall a b c, a ∙ b ∙ c = b ∙ a ∙ c.
Proof.
intros. rewrite (M_comm a b). reflexivity.
Defined.
Lemma M_comm_assoc_r : forall a b c, a ∙ (b ∙ c) = b ∙ (a ∙ c).
Proof.
intros. rewrite M_assoc. rewrite (M_comm a b). rewrite <- M_assoc.
reflexivity.
Defined.
Lemma M_absorb_l : forall a, ⊥ ∙ a = ⊥.
Proof. intros. rewrite M_comm. auto. Defined.
Hint Resolve M_absorb_l.
(****************************)
(* ToA type class *)
(****************************)
Open Scope list_scope.
Global Instance TranslateA : Translate A A := {translate := fun x => x}.
Definition translate_option {X} `{Translate X A} (x : option X) : A :=
match x with
| Some x' => [[x']]
| None => ⊥
end.
Global Instance Translate_option (X : Type) `{Translate X A} : Translate (option X) A :=
{ translate := translate_option }.
Lemma translate_Some : forall {X} `{Translate X A} (x : A),
[[Some x]] = [[x]].
Proof.
auto.
Defined.
Fixpoint translate_list {X} `{Translate X A} (ls : list X) : A :=
match ls with
| nil => ⊤
| b :: ls' => [[b]] ∙ translate_list ls'
end.
Global Instance Translate_list (X : Type) `{Translate X A} : Translate (list X) A :=
{ translate := translate_list }.
(******************************************************)
(* Structural representation of an commutative monoid *)
(******************************************************)
Inductive M_exp :=
| M_zero : M_exp
| M_one : M_exp
| M_var : A -> M_exp
| M_m : M_exp -> M_exp -> M_exp.
Fixpoint translate_M_exp (e : M_exp) : A :=
match e with
| M_zero => ⊥
| M_one => ⊤
| M_var a => a
| M_m e1 e2 => translate_M_exp e1 ∙ translate_M_exp e2
end.
Global Instance Translate_M_exp : Translate M_exp A := {translate := translate_M_exp}.
(****************)
(* lists of A's *)
(****************)
Fixpoint flatten (e : M_exp) : option (list A) :=
match e with
| M_zero => None
| M_one => Some nil
| M_var a => Some (a :: nil)
| M_m e1 e2 => do ls1 ← flatten e1;
do ls2 ← flatten e2;
return_ (ls1 ++ ls2)
end.
Lemma flatten_correct' : forall (ls1 ls2 : list A),
[[ls1]] ∙ [[ls2]] = [[ls1 ++ ls2]].
Proof.
induction ls1; intros; auto.
simpl.
rewrite <- M_assoc. unfold translate_list in *; simpl in *.
rewrite IHls1. reflexivity.
Defined.
Lemma option_list_correct : forall (o1 o2 : option (list A)),
[[o1]] ∙ [[o2]] = [[ do ls1 ← o1;
do ls2 ← o2;
return_ (ls1 ++ ls2) ]].
Proof.
destruct o1; destruct o2; simpl; auto.
apply flatten_correct'.
Defined.
Lemma flatten_correct : forall e, [[e]] = [[flatten e]].
Proof.
intros. unfold translate; simpl.
induction e; simpl; try rewrite M_unit; auto.
rewrite IHe1, IHe2.
apply option_list_correct.
Defined.
(*****************)
(* lists of nats *)
(*****************)
(* Instead of working with list A directly, we instead want to work with
a pair of a list A and a list nat-- the elements in the second list
index into the first list, and let us compare elements.
*)
Fixpoint index (xs : list A) (i : nat) : A :=
match xs, i with
| nil, _ => ⊥
| (x :: _), 0 => x
| (_ :: xs), S x => index xs x
end.
Fixpoint index_wrt (values : list A) (indices : list nat) : list A :=
(* fmap (index values) indices.*) (* for some reason, fmap is not simplifying appropriately? *)
match indices with
| nil => nil
| i :: indices' => index values i :: index_wrt values indices'
end.
Instance Translate_nat_list : Translate (list A * list nat) A :=
{ translate := fun x => match x with
| (values, idx) => [[index_wrt values idx]]
end }.
(* Default list_nat representation of a value *)
(* nats_lt n produces a list of nats [0..n-1] *)
Fixpoint nats_lt n : list nat :=
match n with
| O => nil
| S n' => O :: fmap S (nats_lt n')
end.
Require Import List.
Lemma index_wrt_cons : forall idx a values,
index_wrt (a :: values) (fmap S idx) = index_wrt values idx.
Proof.
induction idx as [ | n]; intros a values; simpl; auto.
rewrite IHidx; auto.
Defined.
Lemma index_wrt_default : forall (ls : list A),
index_wrt ls (nats_lt (length ls)) = ls.
Proof.
induction ls; simpl; auto.
rewrite index_wrt_cons.
rewrite IHls.
reflexivity.
Defined.
(*
Fixpoint translate_list_option {X} `{Translate X A} (ls : list (option A)) : A :=
match ls with
| nil => Some ⊤
| Some a :: ls' => fmap (m a) (translate_list_option ls')
| None :: _ => None
end.
Instance Translate_list_option : Translate (option A) (list (option A)) :=
{ translate := translate_list_option }.
*)
Lemma split_list : forall values ls1 ls2,
[[index_wrt values (ls1 ++ ls2)]] = [[index_wrt values ls1]] ∙ [[index_wrt values ls2]].
Proof.
induction ls1; simpl; intros; auto. simpl in *.
rewrite IHls1. auto.
Qed.
(*
Lemma in_interp_nat : forall i a values idx,
In i idx ->
index values i = Some a ->
In a (index_wrt values idx).
Proof.
induction idx as [ | j idx]; intros pf_in pf_a; simpl in *.
- contradiction.
- destruct pf_in as [eq | pf_in].
* subst. rewrite pf_a. left; auto.
* right. apply IHidx; auto.
Defined.
*)
Lemma in_index : forall i a values,
[[index values i]] = a -> a = ⊥ \/ In a values.
Proof.
induction i; destruct values; intros; auto.
- simpl in H. right. left. auto.
- simpl in H.
destruct (IHi _ _ H); auto.
right. right. auto.
Defined.
Lemma in_index_wrt : forall a idx values,
In a (index_wrt values idx) ->
a = ⊥ \/ In a values.
Proof.
induction idx as [ | i]; intros values pf_in; simpl in *.
- contradiction.
- destruct pf_in as [pf_in | pf_in].
* (* index values i = a implies In a values? not if a = 0... *)
apply (in_index i); auto.
* apply IHidx; auto.
Defined.
(****************)
(* Permutations *)
(****************)
Lemma interp_permutation : forall (values : list A) (idx1 idx2 : list nat),
Permutation idx1 idx2 ->
[[index_wrt values idx1]] = [[index_wrt values idx2]].
Proof.
intros values idx1 idx2 pf.
induction pf; simpl in *; auto.
- rewrite IHpf; auto.
- rewrite M_comm_assoc_r. reflexivity.
- rewrite IHpf1, IHpf2. reflexivity.
Defined.
Lemma permutation_reflection : forall ls1 ls2,
@permutation nat _ PeanoNat.Nat.eq_dec ls1 ls2 -> Permutation ls1 ls2.
Proof.
intros. apply (permutation_Permutation PeanoNat.Nat.eq_dec); auto.
Defined.
Require Import Multiset. About list_contents.
Require Import Arith.
Notation contents := (list_contents eq Nat.eq_dec).
Lemma meq_multiplicity : forall (ls1 ls2 : list nat),
(forall x, In x ls1 \/ In x ls2 ->
multiplicity (contents ls1) x = multiplicity (contents ls2) x) ->
meq (contents ls1) (contents ls2).
Proof.
intros ls1 ls2 H x.
destruct (in_dec Nat.eq_dec x ls1); [apply H; auto | ].
destruct (in_dec Nat.eq_dec x ls2); [apply H; auto | ].
repeat rewrite multiplicity_In_O; auto.
Defined.
(* find the value of the first duplicated value in the list *)
Fixpoint find_duplicate (ls : list nat) : option nat :=
match ls with
| nil => None
| n :: ls' => if in_dec Nat.eq_dec n ls' then Some n
else find_duplicate ls'
end.
(**************)
(* Partiality *)
(**************)
Lemma interp_0 : forall (ls : list A),
In ⊥ ls ->
[[ls]] = ⊥.
Proof.
induction ls; intros pf_in; simpl in *.
- contradiction.
- destruct pf_in as [eq | pf_in].
* rewrite eq. auto.
* rewrite IHls; auto.
Defined.
End CMonoid.
Arguments index_wrt {A} {PCM_A}.
Arguments interp_permutation {A} {PCM_A} {PCM_Laws_A}.
(**************)
(* Automation *)
(**************)
(* Structural tactics *)
Ltac print_goal :=
match goal with
| [|- ?G ] => idtac G
end.
Ltac type_of_goal :=
match goal with
| [ |- ?a = _] => type of a
end.
Ltac has_evars term :=
match term with
| ?L = ?R => has_evar L; has_evar R
| ?L = ?R => has_evars L
| ?L = ?R => has_evars R
| ?Γ1 ∙ ?Γ2 => has_evar Γ1; has_evar Γ2
| ?Γ1 ∙ ?Γ2 => has_evars Γ1
| ?Γ1 ∙ ?Γ2 => has_evars Γ2
end.
(* Simplify parts of an expression, but not the whole thing *)
Ltac simpl_arg e := let e' := fresh "e" in
set (e' := e);
simpl in e';
unfold e';
clear e'.
Ltac destruct_finite_In :=
repeat match goal with
| [ H : In _ _ \/ In _ _ |- _ ] => destruct H
| [ H : In _ nil |- _ ] => apply (False_rect _ H)
| [ H : In ?a (_ :: _) |- _ ] => destruct H; try (subst; reflexivity)
end.
(* Ltac versions of term-level functions *)
Ltac append ls1 ls2 :=
match ls1 with
| ?x :: ?l => let l' := append l ls2 in constr:(x :: l')
| nil => ls2
end.
Ltac lookup x xs :=
match xs with
| x :: _ => constr:(O)
| ?y :: ?xs' => let n := lookup x xs' in constr:(S n)
end.
Ltac difference ls1 ls2 :=
match ls1 with
| nil => ls1
| ?x :: ?ls1' => (* if x ∈ ls2, then ls1' \ ls2*)
let i := lookup x ls2 in
difference ls1' ls2
| ?x :: ?ls1' => (* if x ∉ ls2, then x ∪ (ls1' \ ls2) *)
let l := difference ls1' ls2 in
constr:(x :: l)
end.
Ltac find_duplicate ls :=
match ls with
| ?n :: ?ls' => let z := lookup n ls' in n
| _ :: ?ls' => find_duplicate ls'
end.
(* Manipulating parts of the monoid *)
(* reposition an evar so that it occurs as the right-most associated application
of m on the LHS of a hypothesis *)
(* e.g. : a1 ∙ a2 ∙ ⋯ ∙ e = b1 ∙ ⋯ ∙ bn *)
Ltac repos_evar :=
repeat match goal with
| [ |- ?G ] => (* if the goal has more than one evar, then fail *)
has_evars G; fail 1
| [ |- ?a = ?b ] => (* the evar should occur on the LHS *)
has_evar b; symmetry
| [ |- context[?a ∙ ?b] ] => (* the evar should only occur on the RHS of an m *)
has_evar a; rewrite (M_comm a b)
end;
repeat match goal with
| [ |- ?a ∙ (?b ∙ ?c) = _ ] => rewrite (M_assoc a b c)
end.
(*********************)
(* Doing reification *)
(*********************)
Ltac simpl_args :=
match goal with
| [ |- [[ ?e1 ]] ∙ ?ev = [[ ?e2 ]] ] => simpl_arg e1; simpl_arg e2
| [ |- [[ ?e1 ]] = [[ ?e2 ]] ] => simpl_arg e1; simpl_arg e2
end.
Ltac reify A a :=
match a with
| ⊥ => constr:(@M_zero A)
| ⊤ => constr:(@M_one A)
| ?a1 ∙ ?a2 => let e1 := reify A a1 in
let e2 := reify A a2 in
constr:(@M_m A e1 e2)
| _ => constr:(@M_var A a)
end.
Ltac prep_reification :=
let A := type_of_goal in
match goal with
| [ |- ?a1 ∙ ?ev = ?a2 ] => (* evar case *)
is_evar ev;
let e1 := reify A a1 in
let e2 := reify A a2 in
change (([[e1]] : A) ∙ ev = ([[e2]] : A));
repeat rewrite flatten_correct; auto;
simpl_args
| [ |- ?a1 = ?a2 ] => (* non-evar case *)
let e1 := reify A a1 in
let e2 := reify A a2 in
change (([[e1]] : A) = ([[e2]] : A));
repeat rewrite flatten_correct; auto;
simpl_args
end.
(* reify_wrt (values ls : list A) : list nat
returns a list of indices `idx` so that (informally)
[[index_wrt values idx]] = [[ls ∩ values]]
*)
Ltac reify_wrt values ls :=
match ls with
| nil => constr:(@nil nat)
| ?a :: ?ls' => let i := lookup a values in
let idx := reify_wrt values ls' in
constr:(i :: idx)
| _ :: ?ls' => (* if a does not occur in the reference list `values`, just skip it *)
reify_wrt values ls'
end.
(* This tactic takes in three input lists:
values1, values2 : list A
ls : list A
It returns two lists of indices, idx1 and idx2, such that
[[index_wrt values1 idx1]] ∙ [[index_wrt values2 idx2]] = [[ls]]
*)
Ltac split_reify_wrt values1 values2 ls :=
let idx1 := reify_wrt values1 ls in
let idx2 := reify_wrt values2 ls in
constr:((idx1,idx2)).
Ltac solve_permutation :=
apply interp_permutation;
apply permutation_reflection;
apply meq_multiplicity;
intros; destruct_finite_In;
fail.
(* This tactic finds fragments [[Some a]] and replaces them with [[a]] *)
Ltac strip_Some :=
let A := type_of_goal in
repeat match goal with
| [ |- context[ [[Some ?a]] ] ] =>
replace ([[Some a]]) with ([[a]] : A) by auto
end.
Ltac knot_reification tac :=
strip_Some;
tac;
solve_permutation.
Ltac reification_wrt :=
let A := type_of_goal in
match goal with
| [ |- ?a = ?a ] => reflexivity
| [ |- [[?ls1]] = [[?ls2]] ] =>
let src := append ls1 ls2 in
let idx1 := reify_wrt src ls1 in
let idx2 := reify_wrt src ls2 in
let ls1' := constr:(index_wrt src idx1) in
let ls2' := constr:(index_wrt src idx2) in
change (([[ls1']] : A) = ([[ls2']] : A))
| [ |- [[?ls1]] ∙ ?ev = [[?ls2]] ] =>
let src := append ls1 ls2 in
let ls2_1 := difference ls2 ls1 in
let idx1 := reify_wrt src ls1 in (* indices of ls1 *)
let idx2_1 := reify_wrt src ls2_1 in (* indices of ls2 that are not in ls1 *)
let idx2' := constr:(index_wrt src (idx1 ++ idx2_1)) in
replace ([[ls2]]) with ([[idx2']] : A)
by (simpl_args; strip_Some; reification_wrt; solve_permutation);
rewrite split_list; auto
end.
Ltac monoid := repos_evar; prep_reification; strip_Some; reification_wrt; solve_permutation.
Section Examples.
Variable A : Type.
Variable PCM_A : `{PCM A}.
Variable PCM_A_Laws : `{PCM_Laws A}.
Example PCM_comm' : forall (a b : A), a ∙ b = b ∙ a.
Proof.
intros. monoid.
Defined.
Example PCM_unit' : forall a, ⊤ ∙ a = a.
Proof.
intros. monoid.
Defined.
Example PCM_absorb' : forall a, ⊥ ∙ a = ⊥.
Proof.
intros. monoid.
Defined.
Example PCM_aba : forall a b, a ∙ b ∙ a = a ∙ a ∙ b.
Proof.
intros. monoid.
Qed.
Example PCM_abc : forall a b c, a ∙ b ∙ c = c ∙ a ∙ ⊤ ∙ b.
Proof.
intros. monoid.
Defined.
Example PCM_evar : forall a b c, exists d, b = d -> a ∙ b ∙ c = c ∙ d ∙ a ∙ ⊤.
Proof.
intros.
evar (y : A).
exists y. unfold y.
intros.
monoid.
Qed.
Example PCM_evar2 : forall a b c d e, exists x, x = d ∙ e ∙ b ->
a ∙ x ∙ c = b ∙ c ∙ d ∙ ⊤ ∙ e ∙ a.
Proof.
intros.
evar (y : A).
exists y. unfold y.
intros.
monoid.
Qed.
End Examples.