-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexpression_visitor.hpp
618 lines (507 loc) · 17.4 KB
/
expression_visitor.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#ifndef H_EXPR_VISITOR
#define H_EXPR_VISITOR
#include <memory>
#include <vector>
#include <map>
#include <tuple>
#include <string>
#include <stdexcept>
#include <algorithm>
#include <functional>
#include "dynarraylike.hpp"
#include "expression_dict.hpp"
#include "numeric_interface.hpp"
template <typename T>
class Expression;
template <typename T>
using PExpression = std::shared_ptr<Expression<T>>;
template <typename T>
class EqualExpression;
template <typename T>
class AddExpression;
template <typename T>
class NegExpression;
template <typename T>
class MultExpression;
template <typename T>
class DivExpression;
template <typename T>
class PowExpression;
template <typename T>
class FactExpression;
template <typename T>
class ValExpression;
template <typename T>
class MatExpression;
template <typename T>
class RefExpression;
template <typename T>
class FuncExpression;
template <typename T>
class RecursivePlaceholderExpression;
template <typename T>
class RecursiveExpression;
template <typename T>
class ParametersCall;
template <typename T, typename ReturnType>
class ExpressionVisitor {
public:
virtual ReturnType visit(EqualExpression<T>* expr) = 0;
virtual ReturnType visit(AddExpression<T>* expr) = 0;
virtual ReturnType visit(NegExpression<T>* expr) = 0;
virtual ReturnType visit(MultExpression<T>* expr) = 0;
virtual ReturnType visit(DivExpression<T>* expr) = 0;
virtual ReturnType visit(PowExpression<T>* expr) = 0;
virtual ReturnType visit(FactExpression<T>* expr) = 0;
virtual ReturnType visit(ValExpression<T>* expr) = 0;
virtual ReturnType visit(MatExpression<T>* expr) = 0;
virtual ReturnType visit(RefExpression<T>* expr) = 0;
virtual ReturnType visit(FuncExpression<T>* expr) = 0;
// Optionnal visitation
virtual ReturnType visit(RecursivePlaceholderExpression<T>*) {return {};}
virtual ReturnType visit(RecursiveExpression<T>*) {return {};}
};
// Design choice: limit the number of visitors base class.
// => Only two visitors base class that any AST node should accept explicitly:
// - TransformationVisitor returning a PExpression<T>
// - FoldingVisitor returning a T
// class TransformationVisitor
// This is the base class of visitors that modify the parser-AST to :
// - add semantic nodes
// - simplify the tree
// - change the representation of the expression (example: pretty printing
// that would use the special string node to accumulate the representation)
template <typename T>
class TransformationVisitor : public ExpressionVisitor<T, PExpression<T>> {
};
template <typename T>
inline void transform_visitation(TransformationVisitor<T>& v, PExpression<T>& to_transform) {
PExpression<T> e = to_transform->accept(v);
if(e) {
to_transform = e;
}
}
// class FoldingVisitor
// This is the base class of visitors that "folds" the tree to :
// - evaluate the expression (interpreter)
// - generate code (compiler)
template <typename T>
class FoldingVisitor : public ExpressionVisitor<T, T> {
};
// class StatefullVisitor
// This base class is provided for convenience (and sanity reasons).
// This is simply a TransformationVisitor that is not supposed to modify
// the AST but rather gather some information about an AST in its internal state.
// Use TransformationVisitor instead if you mean to modify the AST.
// Visitor derived from TransformationVisitor can have an internal state too...
// If you choose StatefullVisitor, just remember that nothing prevents you
// from modifying the AST in secret... (don't do that).
template <typename T>
class StatefulVisitor : public TransformationVisitor<T> {
};
template <typename T>
class ParametersVisitor : public StatefulVisitor<T> {
public:
virtual PExpression<T> visit(MatExpression<T>* expr) {
if(visitor_depth++ == 0) {
for(auto e : expr->children) {
e->accept(*this);
}
}
else {
visit_others_expr_imp(expr);
}
return PExpression<T>();
}
virtual PExpression<T> visit(EqualExpression<T>* expr) {
kewword_params_begin = true;
this->parameters_dict[expr->m_e1()->Name()] = expr->m_e2();
this->parameters_names.push_back(expr->m_e1()->Name());
++visitor_depth;
return PExpression<T>();
}
virtual PExpression<T> visit(RefExpression<T>* expr) {
if(!kewword_params_begin) {
this->parameters_names.push_back(expr->Name());
this->parameters_expr.push_back(expr->self());
}
else {
throw(std::runtime_error("Invalid parameters. Non-keyword argument found after a keyword argument."));
}
++visitor_depth;
return PExpression<T>();
}
PExpression<T> visit_others_expr_imp(Expression<T>* expr) {
if(!kewword_params_begin) {
this->parameters_expr.push_back(expr->self());
}
else {
throw(std::runtime_error("Invalid parameters. Non-keyword argument found after a keyword argument."));
}
++visitor_depth;
return PExpression<T>();
}
virtual PExpression<T> visit(FuncExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(AddExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(NegExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(MultExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(DivExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(PowExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(FactExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
virtual PExpression<T> visit(ValExpression<T>* expr) {
return visit_others_expr_imp(expr);
}
std::vector<std::string> get_parameters_names() {
return parameters_names;
}
std::vector<PExpression<T>> get_parameters_expr() {
return parameters_expr;
}
ExprDict<T> get_parameters_dict() {
return parameters_dict;
}
private:
size_t visitor_depth = 0;
bool kewword_params_begin = false;
std::vector<std::string> parameters_names;
std::vector<PExpression<T>> parameters_expr;
ExprDict<T> parameters_dict;
};
template <typename T>
class SubVisitor : public StatefulVisitor<T> {
public:
virtual PExpression<T> visit(RefExpression<T>* expr) {
this->index_name = expr->Name();
this->a = 1;
return PExpression<T>();
}
virtual PExpression<T> visit(ValExpression<T>* expr) {
b = numeric_interface<T>::toInt(expr->value);
return PExpression<T>();
}
virtual PExpression<T> visit(AddExpression<T>* expr) {
SubVisitor l,r;
expr->m_e1()->accept(l);
expr->m_e2()->accept(r);
if(l.index_name != "" && r.index_name != "" && l.index_name != r.index_name) {
a = 0;
b = 0;
index_name = "";
throw std::runtime_error("Multiple index name found inside a sub-expression.");
}
a = l.a + r.a;
b = l.b + r.b;
this->index_name = l.index_name;
return PExpression<T>();
}
virtual PExpression<T> visit(NegExpression<T>* expr) {
SubVisitor l;
expr->m_e()->accept(l);
a = -l.a;
b = -l.b;
this->index_name = l.index_name;
return PExpression<T>();
}
virtual PExpression<T> visit(MultExpression<T>* expr) {
SubVisitor l,r;
expr->m_e1()->accept(l);
expr->m_e2()->accept(r);
if(l.a == 0) {
this->index_name = r.index_name;
a = l.b * r.a;
}
else if(r.a == 0) {
this->index_name = l.index_name;
a = l.a * r.b;
}
else {
a = 0;
b = 0;
index_name = "";
throw std::runtime_error("Unexpected second degree polynom inside a sub expression.");
}
b = l.b * r.b;
return PExpression<T>();
}
PExpression<T> visit_unexpected_expression() {
a = 0;
b = 0;
index_name = "";
throw std::runtime_error("Unexpected expression inside a sub expression.");
return PExpression<T>();
}
virtual PExpression<T> visit(MatExpression<T>* ) {
return visit_unexpected_expression();
}
virtual PExpression<T> visit(EqualExpression<T>* ) {
return visit_unexpected_expression();
}
virtual PExpression<T> visit(FuncExpression<T>* ) {
return visit_unexpected_expression();
}
virtual PExpression<T> visit(DivExpression<T>* ) {
return visit_unexpected_expression();
}
virtual PExpression<T> visit(PowExpression<T>* ) {
return visit_unexpected_expression();
}
virtual PExpression<T> visit(FactExpression<T>* ) {
return visit_unexpected_expression();
}
std::string get_index_name() {
return index_name;
}
int get_a() {
return a;
}
int get_b() {
return b;
}
private:
std::string index_name;
int a = 0;
int b = 0;
};
template <typename T>
class RecursiveExprVisitor : public TransformationVisitor<T> {
public:
RecursiveExprVisitor(const std::string& name,const ParametersDefinition<T>& ai_parameters, PExpression<T> recexp)
: name_(name), params_def_(ai_parameters)
{
recexp->accept(*this);
}
template <typename U>
PExpression<T> binary_visit(U* expr) {
transform_visitation(expr->m_e1());
transform_visitation(expr->m_e2());
return PExpression<T>();
}
template <typename U>
PExpression<T> unary_visit(U* expr) {
transform_visitation(expr->m_e());
return PExpression<T>();
}
virtual PExpression<T> visit(EqualExpression<T>* expr) {
return binary_visit(expr);
}
virtual PExpression<T> visit(AddExpression<T>* expr) {
return binary_visit(expr);
}
virtual PExpression<T> visit(NegExpression<T>* expr) {
return unary_visit(expr);
}
virtual PExpression<T> visit(MultExpression<T>* expr) {
return binary_visit(expr);
}
virtual PExpression<T> visit(DivExpression<T>* expr) {
return binary_visit(expr);
}
virtual PExpression<T> visit(PowExpression<T>* expr) {
return binary_visit(expr);
}
virtual PExpression<T> visit(FactExpression<T>* expr) {
return unary_visit(expr);
}
virtual PExpression<T> visit(ValExpression<T>*) {
return PExpression<T>();
}
virtual PExpression<T> visit(MatExpression<T>* expr) {
for(auto& e : expr->children) {
transform_visitation(e);
}
return PExpression<T>();
}
virtual PExpression<T> visit(RefExpression<T>* expr) {
PExpression<T> e;
if(this->params_def_.a() == 0 && expr->Name() == name_) {
auto it = wrapped_.find(-1ll);
if(it == wrapped_.end()) {
e = std::make_shared<RecursivePlaceholderExpression<T>>(name_, ParametersCall<T>());
wrapped_.insert(std::make_pair(-1ll, std::forward_as_tuple(to_transform_, e)));
}
else {
wrapped_.insert(std::make_pair(-1ll, std::forward_as_tuple(to_transform_, std::get<1>(it->second))));
}
}
return PExpression<T>();
}
virtual PExpression<T> visit(FuncExpression<T>* expr) {
PExpression<T> e;
auto params_call = ParametersCall<T>(expr->m_e1(), expr->m_e2());
if(this->params_def_.a() == params_call.a() &&
(params_call.a() != 0)) {
auto diffb = params_call.b()-params_def_.b();
long long mod = diffb % params_call.a();
long long diff = diffb / params_call.a();
if(mod == 0 && expr->Name() == name_) {
auto it = wrapped_.find(diff);
if(it == wrapped_.end()) {
e = std::make_shared<RecursivePlaceholderExpression<T>>(name_, params_call);
wrapped_.insert(std::make_pair(diff, std::forward_as_tuple(to_transform_, e)));
}
else {
wrapped_.insert(std::make_pair(diff, std::forward_as_tuple(to_transform_, std::get<1>(it->second))));
}
}
}
return PExpression<T>();
}
inline void transform_visitation(PExpression<T>& to_transform) {
to_transform_ = &to_transform;
(*to_transform_)->accept(*this);
}
std::multimap<long long int, std::tuple<PExpression<T>*, PExpression<T>>> wrapped() {
return wrapped_;
}
private:
std::string name_;
ParametersDefinition<T> params_def_;
std::multimap<long long int, std::tuple<PExpression<T>*, PExpression<T>>> wrapped_;
PExpression<T>* to_transform_;
};
template <typename T>
class ReferenceStack;
template <typename T>
class EvaluationVisitor : public FoldingVisitor<T> {
public:
EvaluationVisitor<T>(ReferenceStack<T>& stack) : stack_(stack) {}
ReferenceStack<T>& stack() {return stack_;}
virtual T visit(EqualExpression<T>* expr) {
if(expr->children[0]->children.size() > 0) {
this->stack_.Set(expr->Name(), ParametersDefinition<T>(expr->children[0]->children[0], expr->children[0]->children[1]), expr->children[1]);
}
else {
this->stack_.Set(expr->Name(), ParametersDefinition<T>(), expr->children[1]);
}
return expr->m_e1()->accept(*this);
}
virtual T visit(AddExpression<T>* expr) {
return expr->m_e1()->accept(*this)
+ expr->m_e2()->accept(*this);
}
virtual T visit(NegExpression<T>* expr) {
return -expr->m_e()->accept(*this);
}
virtual T visit(MultExpression<T>* expr) {
return expr->m_e1()->accept(*this)
* expr->m_e2()->accept(*this);
}
virtual T visit(DivExpression<T>* expr) {
return expr->m_e1()->accept(*this)
/ expr->m_e2()->accept(*this);
}
virtual T visit(PowExpression<T>* expr) {
return numeric_interface<T>::pow(
expr->m_e1()->accept(*this),
expr->m_e2()->accept(*this));
}
virtual T visit(FactExpression<T>* expr) {
return T(numeric_interface<T>::fact(expr->m_e()->accept(*this)));
}
virtual T visit(ValExpression<T>* expr) {
return expr->value;
}
virtual T visit(MatExpression<T>* expr) {
size_t n, m;
std::tie(n, m) = expr->Size();
dynarray<T> evaluation(n*m);
dynarray<std::pair<size_t, size_t>> sizes(n*m);
// Evaluating the matrix expression
for(size_t i = 0; i < n; ++i) {
for(size_t j = 0; j < m; ++j) {
evaluation[i*m+j] = expr->children[i*m+j]->accept(*this);
sizes[i*m+j] = evaluation[i*m+j].Size();
}
}
// Compute the result size of each row and col in the matrix expression
dynarray<size_t> i_rows(n);
dynarray<size_t> j_cols(m);
i_rows.fill(1);
j_cols.fill(1);
for(size_t i = 0; i < n; ++i) {
for(size_t j = 0; j < m; ++j) {
i_rows[i] = std::max(i_rows[i], sizes[i*m+j].first);
j_cols[j] = std::max(j_cols[j], sizes[i*m+j].second);
}
}
// Compute the size of each previous (up and left) result matrix blocks
dynarray<size_t> ri_rows = i_rows;
dynarray<size_t> rj_cols = j_cols;
for(size_t i = 1; i < n; ++i) {
ri_rows[i] += i_rows[i-1];
}
size_t rn = ri_rows.back();
ri_rows.back() = 0;
std::rotate(ri_rows.begin(), ri_rows.end()-1, ri_rows.end());
for(size_t j = 1; j < m; ++j) {
rj_cols[j] += j_cols[j-1];
}
size_t rm = rj_cols.back();
rj_cols.back() = 0;
std::rotate(rj_cols.begin(), rj_cols.end()-1, rj_cols.end());
// Populate the final matrix with the right size
T retval(rn, rm);
for(size_t i = 0; i < n; ++i) {
for(size_t j = 0; j < m; ++j) {
for(size_t ri = 0; ri < i_rows[i]; ++ri) {
for(size_t rj = 0; rj < j_cols[j]; ++rj) {
auto s = sizes[i*m+j];
if(ri < s.first && rj < s.second) {
// get the evaluated cell result
retval((ri_rows[i]+ri+1), (rj_cols[j]+rj+1)) = evaluation[i*m+j](ri+1, rj+1);
}
else {
// extend the previous (up and left) evaluated cell result
retval((ri_rows[i]+ri+1), (rj_cols[j]+rj+1)) = evaluation[i*m+j](s.first, s.second);
}
}
}
}
}
// Surprisingly it just works (at least for now).
// Note to self : refactor later
return retval; // finally
}
virtual T visit(RefExpression<T>* expr) {
return stack_.Eval(expr->Name(), ParametersCall<T>());
}
virtual T visit(FuncExpression<T>* expr) {
return stack_.Eval(expr->Name(), ParametersCall<T>(expr->m_e1(), expr->m_e2()));
}
virtual T visit(RecursivePlaceholderExpression<T>* expr) {
return expr->get();
}
virtual T visit(RecursiveExpression<T>* expr) {
for(auto e : expr->children) {
// We don't want to visit children here as we expect RecursivePlaceholderExpression
auto rec = dynamic_cast<RecursivePlaceholderExpression<T>*>(e.get());
if(rec) {
rec->Set(stack_.SafeRecursiveEval(rec->Name(), rec->params()));
}
else {
// TODO:
// throw something as interpreter internal error ?
// assert ?
// refactor RecursiveExpression to hold RecursivePlaceholderExpression directly ?
}
}
return expr->recursive_expr()->accept(*this);
}
private:
ReferenceStack<T>& stack_;
};
#endif // H_EXPR_VISITOR