diff --git a/examples/inference_and_learning/inference_methods_comparison.ipynb b/examples/inference_and_learning/inference_methods_comparison.ipynb index a2bc4b0e..228af683 100644 --- a/examples/inference_and_learning/inference_methods_comparison.ipynb +++ b/examples/inference_and_learning/inference_methods_comparison.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -25,17 +25,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-06-17 18:05:07.093645: W external/xla/xla/service/gpu/nvptx_compiler.cc:763] The NVIDIA driver's CUDA version is 12.4 which is older than the ptxas CUDA version (12.5.40). Because the driver is older than the ptxas version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.\n" - ] - } - ], + "outputs": [], "source": [ "num_states = [3, 2]\n", "num_obs = [2]\n", @@ -80,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -120,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -141,17 +133,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "65.1 µs ± 838 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" - ] - } - ], + "outputs": [], "source": [ "smoothed_beliefs = v_jso(beliefs, agents.B, actions_seq)\n", "%timeit v_jso(beliefs, agents.B, actions_seq)[0][0].block_until_ready()" @@ -166,17 +150,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "86.8 µs ± 1.26 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" - ] - } - ], + "outputs": [], "source": [ "sparse_B = jtu.tree_map(lambda b: sparse.BCOO.fromdense(b, n_batch=1), agents.B)\n", "\n", @@ -193,30 +169,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Filtered beliefs')" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQMAAAKqCAYAAACO80jyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqcklEQVR4nO3de5CV9X348c9ZLisibJOAC3glGAPeMN0oXkawohI7NSFjxdhpC16CNkhr0DRhfmnQZEZ0NJISvCAdxdhfmphGaNpJyiiCxvxoUSjGXBTbaMyogBQDdcWj7D6/P/Jzf9nIZZ+9cHb5vF4z5499zjnPfh7m2eXLm3OeUymKoggAAAAA4IBXV+sBAAAAAID9QwwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwE9ujFF1+MSqUSS5cubdt2ww03RKVSqd1QJXV03rPPPjtOOOGEbv3eRx99dMyYMaPt69WrV0elUonVq1d3an9PPvlknHHGGTF48OCoVCqxYcOGbpkTAACAPMRASGzp0qVRqVR2e/vCF77Q4f3cdNNNsXz58p4blHjnnXfi4osvjm3btsWCBQvigQceiKOOOqrWYwEAANDH9K/1AEDtffnLX47Ro0e323bCCSfEUUcdFTt37owBAwbs9fk33XRT/PEf/3FMnTq1B6fs+yZOnBg7d+6MgQMHln7uf/3Xf8Uvf/nLWLJkSVx55ZU9MB0AAAAZiIFAXHDBBfHRj350t/cddNBB+3ma33jrrbdi4MCBUVd34LyAua6urtN/nlu2bImIiN/7vd/rxokAAADI5sD5VzbQ7XZ3zcDfValUorm5Oe6///62txj/9nXyXn755bj88sujsbEx6uvr4/jjj49777233T7evZbet771rfjiF78Yhx12WBx88MGxY8eOiIj493//9/jYxz4WDQ0NcfDBB8ekSZPiRz/60XtmeeKJJ+KUU06Jgw46KMaMGROLFy8ufczr1q2LM844IwYNGhSjR4+Ou++++z2PqVarMW/evDjmmGOivr4+jjjiiPjrv/7rqFare933nq4ZuK/jmzFjRkyaNCkiIi6++OKoVCpx9tlnR0TEpk2b4rLLLovDDz886uvrY+TIkfGJT3wiXnzxxdLHDgAAwIHPKwOB2L59e2zdurXdtmHDhnXouQ888EBceeWVceqpp8bMmTMjImLMmDEREbF58+Y47bTTolKpxDXXXBPDhw+PH/zgB3HFFVfEjh074tprr223r6985SsxcODAuP7666NarcbAgQPj0UcfjQsuuCCamppi3rx5UVdXF/fdd1+cc8458cMf/jBOPfXUiIh45pln4vzzz4/hw4fHDTfcELt27Yp58+ZFY2Njh/8cXn/99fjDP/zDmDZtWlx66aXx4IMPxl/8xV/EwIED4/LLL4+IiNbW1vj4xz8eTzzxRMycOTPGjRsXzzzzTCxYsCA2btxY+tqJHTm+q666Kg477LC46aab4i//8i/jlFNOaTuuiy66KH7605/G7Nmz4+ijj44tW7bEww8/HC+99FIcffTRpWYBAAAggQJI67777isiYre3oiiKF154oYiI4r777mt7zrx584rf/dUxePDgYvr06e/Z/xVXXFGMHDmy2Lp1a7vtn/rUp4qGhobizTffLIqiKFatWlVERPHBD36wbVtRFEVra2vxoQ99qJgyZUrR2tratv3NN98sRo8eXZx33nlt26ZOnVocdNBBxS9/+cu2bT/72c+Kfv36vWfe3Zk0aVIREcVXv/rVtm3VarU4+eSTi0MPPbR4++23i6IoigceeKCoq6srfvjDH7Z7/t13311ERPGjH/2obdtRRx3V7s/l3eNctWpV6eN797nf+c532ra9/vrrRUQUt9566z6PDwAAAIqiKLxNGIg77rgjHn744Xa3riqKIr773e/GhRdeGEVRxNatW9tuU6ZMie3bt8f69evbPWf69OkxaNCgtq83bNgQzz//fPzJn/xJ/Pd//3fb85ubm2Py5Mnx+OOPR2tra7S0tMSKFSti6tSpceSRR7Y9f9y4cTFlypQOz9y/f/+46qqr2r4eOHBgXHXVVbFly5ZYt25dRER85zvfiXHjxsXYsWPbHdM555wTERGrVq3q8Pfr6PHtyaBBg2LgwIGxevXqeP311zv8fQEAAMjL24SBOPXUU/f4ASKd9dprr8Wvf/3ruOeee+Kee+7Z7WPe/VCMd/3uJxo///zzEfGbSLgn27dvj2q1Gjt37owPfehD77n/wx/+cHz/+9/v0MyjRo2KwYMHt9t27LHHRsRvrp942mmnxfPPPx8///nPY/jw4bvdx+8e09509Pje97737fa++vr6uOWWW+K6666LxsbGOO200+KP/uiP4s///M9jxIgRHZ4DAACAPMRAoEe8+4q2P/3TP91j7DrppJPaff3brwr87X3ceuutcfLJJ+92H4cccsg+P7ijO7W2tsaJJ54Yt99++27vP+KII0rtK2Lfx7c31157bVx44YWxfPnyWLFiRfzN3/xNzJ8/Px599NH4yEc+0uFZAAAAyEEMBLqsUqm8Z9vw4cNjyJAh0dLSEueee26n9vvuB5EMHTp0r/sYPnx4DBo0qO2Vdr/tueee6/D3e+WVV6K5ubndqwM3btwYEdH2YRxjxoyJp59+OiZPnrzb4y6jo8fXkf1cd911cd1118Xzzz8fJ598cnz1q1+Nv//7v+/SfAAAABx4XDMQ6LLBgwfHr3/963bb+vXrFxdddFF897vfjZ/85Cfvec5rr722z/02NTXFmDFj4rbbbos33nhjj/vo169fTJkyJZYvXx4vvfRS2/0///nPY8WKFR0+jl27dsXixYvbvn777bdj8eLFMXz48GhqaoqIiGnTpsXLL78cS5Ysec/zd+7cGc3NzR3+fh09vj15880346233mq3bcyYMTFkyJD9+mpJAAAA+g6vDAS6rKmpKR555JG4/fbbY9SoUTF69OiYMGFC3HzzzbFq1aqYMGFCfPrTn47jjjsutm3bFuvXr49HHnkktm3bttf91tXVxd/93d/FBRdcEMcff3xcdtllcdhhh8XLL78cq1atiqFDh8Y///M/R0TEjTfeGP/6r/8aZ511VnzmM5+JXbt2xde//vU4/vjj48c//nGHjmPUqFFxyy23xIsvvhjHHntsfPvb344NGzbEPffcEwMGDIiIiD/7sz+LBx98MK6++upYtWpVnHnmmdHS0hLPPvtsPPjgg7FixYoOX3+xzPHtzsaNG2Py5Mkxbdq0OO6446J///6xbNmy2Lx5c3zqU5/q0AwAAADkIgYCXXb77bfHzJkz44tf/GLs3Lkzpk+fHhMmTIjGxsZYu3ZtfPnLX46HHnoo7rzzzvjABz4Qxx9/fNxyyy0d2vfZZ58da9asia985SuxaNGieOONN2LEiBExYcKEdp/8e9JJJ8WKFStizpw58aUvfSkOP/zwuPHGG+PVV1/tcAx83/veF/fff3/Mnj07lixZEo2NjbFo0aL49Kc/3faYurq6WL58eSxYsCC+8Y1vxLJly+Lggw+OD37wg/FXf/VXbR840lEdPb7dOeKII+LSSy+NlStXxgMPPBD9+/ePsWPHxoMPPhgXXXRRqTkAAADIoVIURVHrIQAAAACAnueagQAAAACQhBgIAAAAAEmIgQAAAACQhBgIAAAAAEmIgQAAAACQhBgIAAAAAEmIgQAAAACQRP9aD/Cukz67oNYj0MfsOrjWE9DXHLSt1hPQl3xg8f+p9Qj0MQ+3fqfWI9BF59VdXOsRgAPcileervUI9DFTRo2v9Qj0MR1Zk3plIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAk0b/sE7Zu3Rr33ntvrFmzJjZt2hQRESNGjIgzzjgjZsyYEcOHD+/2IQEA4F3WowAAnVfqlYFPPvlkHHvssbFw4cJoaGiIiRMnxsSJE6OhoSEWLlwYY8eOjaeeeqqnZgUAIDnrUQCArin1ysDZs2fHxRdfHHfffXdUKpV29xVFEVdffXXMnj071qxZs9f9VKvVqFar7ba17toVdf1Lv1ARAIBEenQ9WrREXaVft88MANCblHpl4NNPPx2f/exn37PwioioVCrx2c9+NjZs2LDP/cyfPz8aGhra3V578pEyowAAkFBPrkdfiGd7YGIAgN6lVAwcMWJErF27do/3r127NhobG/e5n7lz58b27dvb3Yafcm6ZUQAASKgn16OjY2x3jgoA0CuVel/u9ddfHzNnzox169bF5MmT2xZamzdvjpUrV8aSJUvitttu2+d+6uvro76+vt02bxEGAGBfenQ96i3CAEACpQrcrFmzYtiwYbFgwYK48847o6WlJSIi+vXrF01NTbF06dKYNm1ajwwKAADWowAAXVP65XiXXHJJXHLJJfHOO+/E1q1bIyJi2LBhMWDAgG4fDgAAfpf1KABA53X6vbkDBgyIkSNHducsAADQYdajAADllfoAEQAAAACg7xIDAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkuhf6wGgsw55uaj1CPQxu+ortR4BADiArHjl6VqPQB8zZdT4Wo8A4JWBAAAAAJCFGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASXR7DPzVr34Vl19++V4fU61WY8eOHe1urbt2dfcoAAAk1On1aNGynyYEAKidbo+B27Zti/vvv3+vj5k/f340NDS0u7325CPdPQoAAAl1dj36Qjy7nyYEAKid/mWf8L3vfW+v9//iF7/Y5z7mzp0bc+bMabftjP+1uOwoAAAk1FPr0U82zOjKWAAAfULpGDh16tSoVCpRFMUeH1OpVPa6j/r6+qivr2+3ra5/6VEAAEiox9ajlX7dMh8AQG9W+m3CI0eOjIceeihaW1t3e1u/fn1PzAkAABFhPQoA0BWlY2BTU1OsW7duj/fv639pAQCgK6xHAQA6r/R7cz/3uc9Fc3PzHu8/5phjYtWqVV0aCgAA9sR6FACg80rHwLPOOmuv9w8ePDgmTZrU6YEAAGBvrEcBADqv9NuEAQAAAIC+SQwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCT613qAdx3ySmutR6CPaamv1HoE+piiX60noC9Z8crTtR4B2M/83FPWlFHjaz0CcIDzdxM9wSsDAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkigdA3fu3BlPPPFE/OxnP3vPfW+99VZ84xvf6JbBAABgd6xHAQA6r1QM3LhxY4wbNy4mTpwYJ554YkyaNCleffXVtvu3b98el1122T73U61WY8eOHe1urS27yk8PAEAqPbkerVZbe3J0AIBeoVQM/PznPx8nnHBCbNmyJZ577rkYMmRInHnmmfHSSy+V+qbz58+PhoaGdreXf76y1D4AAMinJ9ejN3/99R6aGgCg96gURVF09MGNjY3xyCOPxIknnhgREUVRxGc+85n4/ve/H6tWrYrBgwfHqFGjoqWlZa/7qVarUa1W2207//K7oq5f/04cAlm11FdqPQJ9zNuHOGfouHVfuqvWI9DH1I3YWOsRUujJ9eiA138/6utdUpuOmzJqfK1HAA5wK155utYj0Md0ZE1aarWzc+fO6N///we7SqUSd911V1x44YUxadKk2LixY4vg+vr6GDp0aLubEAgAwL705HpUCAQAMihV4MaOHRtPPfVUjBs3rt32RYsWRUTExz/+8e6bDAAAfof1KABA15T6789PfvKT8Q//8A+7vW/RokVx6aWXRol3HQMAQCnWowAAXVPqmoE96YxLvlrrEehjXDOQslwzkDJcM5CyXDOw72vddGytR6CPcc1AoKe5ZiBldfs1AwEAAACAvksMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkKkVRFLUegt2rVqsxf/78mDt3btTX19d6HPoA5wxlOWcoyzkD+fi5pwznC2U5ZyjLOdN1YmAvtmPHjmhoaIjt27fH0KFDaz0OfYBzhrKcM5TlnIF8/NxThvOFspwzlOWc6TpvEwYAAACAJMRAAAAAAEhCDAQAAACAJMTAXqy+vj7mzZvngph0mHOGspwzlOWcgXz83FOG84WynDOU5ZzpOh8gAgAAAABJeGUgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACTRv9YDvOvYmxbUegT6mF0HF7UegT6m/xuVWo9AH/LslXfVegT6mLoRG2s9Al10Xt3FtR6BPmbFK0/XegT6mCmjxtd6BPoYv2coqyNrUq8MBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAk+pd9wtatW+Pee++NNWvWxKZNmyIiYsSIEXHGGWfEjBkzYvjw4d0+JAAAvMt6FACg80q9MvDJJ5+MY489NhYuXBgNDQ0xceLEmDhxYjQ0NMTChQtj7Nix8dRTT+1zP9VqNXbs2NHu1rprV6cPAgCAHHp0PVq07IcjAACorUpRFEVHH3zaaafF+PHj4+67745KpdLuvqIo4uqrr44f//jHsWbNmr3u54Ybbogbb7yx3bb3n3N+fGDyx0qMTna7Du7wqQsREdH/jcq+HwT/z7NX3lXrEehj6kZsrPUIKfTkenR0jIsxleO7fWYOXCteebrWI9DHTBk1vtYj0Mf4PUNZHVmTloqBgwYNiv/4j/+IsWPH7vb+Z599Nj7ykY/Ezp0797qfarUa1Wq13bbf/9riqOtf+l3LJCYGUpYYSBliIGWJgftHT65HP9kwI+oq/bptVg58/pFOWWIgZfk9Q1kdWZOWqm8jRoyItWvX7nHxtXbt2mhsbNznfurr66O+vr7dNiEQAIB96dH1qBAIACRQqsBdf/31MXPmzFi3bl1Mnjy5baG1efPmWLlyZSxZsiRuu+22HhkUAACsRwEAuqZUDJw1a1YMGzYsFixYEHfeeWe0tPzmIsv9+vWLpqamWLp0aUybNq1HBgUAAOtRAICuKf3e3EsuuSQuueSSeOedd2Lr1q0RETFs2LAYMGBAtw8HAAC/y3oUAKDzOn2hvgEDBsTIkSO7cxYAAOgw61EAgPLqaj0AAAAAALB/iIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJ9K/1AO+qHrqr1iPQx9Tt1LIppzrK7xk6bsqo8bUegT7m4dZaT0BXrXjl6VqPQB/j7wrK8nuGsvyeoayOrEnVFAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCS6PQb+6le/issvv3yvj6lWq7Fjx452t+KdXd09CgAACXV2PVqttu6nCQEAaqfbY+C2bdvi/vvv3+tj5s+fHw0NDe1u23/waHePAgBAQp1dj9789df304QAALXTv+wTvve97+31/l/84hf73MfcuXNjzpw57bad8L/vKDsKAAAJ9dR6dMDrv9+luQAA+oLSMXDq1KlRqVSiKIo9PqZSqex1H/X19VFfX9/+OQNKjwIAQEI9tR5tfdPltAGAA1/pFc/IkSPjoYceitbW1t3e1q9f3xNzAgBARFiPAgB0RekY2NTUFOvWrdvj/fv6X1oAAOgK61EAgM4r/d7cz33uc9Hc3LzH+4855phYtWpVl4YCAIA9sR4FAOi80jHwrLPO2uv9gwcPjkmTJnV6IAAA2BvrUQCAznOVZAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIolIURVHrIdi9arUa8+fPj7lz50Z9fX2tx6EPcM5QlnOGspwzkI+fe8pwvlCWc4aynDNdJwb2Yjt27IiGhobYvn17DB06tNbj0Ac4ZyjLOUNZzhnIx889ZThfKMs5Q1nOma7zNmEAAAAASEIMBAAAAIAkxEAAAAAASEIM7MXq6+tj3rx5LohJhzlnKMs5Q1nOGcjHzz1lOF8oyzlDWc6ZrvMBIgAAAACQhFcGAgAAAEASYiAAAAAAJCEGAgAAAEASYiAAAAAAJCEG9mJ33HFHHH300XHQQQfFhAkTYu3atbUeiV7q8ccfjwsvvDBGjRoVlUolli9fXuuR6OXmz58fp5xySgwZMiQOPfTQmDp1ajz33HO1Hote7K677oqTTjophg4dGkOHDo3TTz89fvCDH9R6LKCHWY9ShjUpZViPUpb1aPcRA3upb3/72zFnzpyYN29erF+/PsaPHx9TpkyJLVu21Ho0eqHm5uYYP3583HHHHbUehT7isccei1mzZsW//du/xcMPPxzvvPNOnH/++dHc3Fzr0eilDj/88Lj55ptj3bp18dRTT8U555wTn/jEJ+KnP/1prUcDeoj1KGVZk1KG9ShlWY92n0pRFEWth+C9JkyYEKecckosWrQoIiJaW1vjiCOOiNmzZ8cXvvCFGk9Hb1apVGLZsmUxderUWo9CH/Laa6/FoYceGo899lhMnDix1uPQR7z//e+PW2+9Na644opajwL0AOtRusKalLKsR+kM69HO8crAXujtt9+OdevWxbnnntu2ra6uLs4999xYs2ZNDScDDlTbt2+PiN/8ZQr70tLSEt/61reiubk5Tj/99FqPA/QA61Fgf7MepQzr0a7pX+sBeK+tW7dGS0tLNDY2ttve2NgYzz77bI2mAg5Ura2tce2118aZZ54ZJ5xwQq3HoRd75pln4vTTT4+33norDjnkkFi2bFkcd9xxtR4L6AHWo8D+ZD1KR1mPdg8xECC5WbNmxU9+8pN44oknaj0KvdyHP/zh2LBhQ2zfvj3+8R//MaZPnx6PPfaYBRgA0CXWo3SU9Wj3EAN7oWHDhkW/fv1i8+bN7bZv3rw5RowYUaOpgAPRNddcE//yL/8Sjz/+eBx++OG1HodebuDAgXHMMcdERERTU1M8+eST8bd/+7exePHiGk8GdDfrUWB/sR6lDOvR7uGagb3QwIEDo6mpKVauXNm2rbW1NVauXOm98EC3KIoirrnmmli2bFk8+uijMXr06FqPRB/U2toa1Wq11mMAPcB6FOhp1qN0B+vRzvHKwF5qzpw5MX369PjoRz8ap556anzta1+L5ubmuOyyy2o9Gr3QG2+8Ef/5n//Z9vULL7wQGzZsiPe///1x5JFH1nAyeqtZs2bFN7/5zfinf/qnGDJkSGzatCkiIhoaGmLQoEE1no7eaO7cuXHBBRfEkUceGf/zP/8T3/zmN2P16tWxYsWKWo8G9BDrUcqyJqUM61HKsh7tPpWiKIpaD8HuLVq0KG699dbYtGlTnHzyybFw4cKYMGFCrceiF1q9enX8wR/8wXu2T58+PZYuXbr/B6LXq1Qqu91+3333xYwZM/bvMPQJV1xxRaxcuTJeffXVaGhoiJNOOik+//nPx3nnnVfr0YAeZD1KGdaklGE9SlnWo91HDAQAAACAJFwzEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIIn/C+frtYfPwrLqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# with dense matrices\n", "fig, axes = plt.subplots(2, 2, figsize=(16, 8), sharex=True)\n", @@ -232,30 +187,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Filtered beliefs')" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQMAAAKqCAYAAACO80jyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqcklEQVR4nO3de5CV9X348c9ZLisibJOAC3glGAPeMN0oXkawohI7NSFjxdhpC16CNkhr0DRhfmnQZEZ0NJISvCAdxdhfmphGaNpJyiiCxvxoUSjGXBTbaMyogBQDdcWj7D6/P/Jzf9nIZZ+9cHb5vF4z5499zjnPfh7m2eXLm3OeUymKoggAAAAA4IBXV+sBAAAAAID9QwwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwE9ujFF1+MSqUSS5cubdt2ww03RKVSqd1QJXV03rPPPjtOOOGEbv3eRx99dMyYMaPt69WrV0elUonVq1d3an9PPvlknHHGGTF48OCoVCqxYcOGbpkTAACAPMRASGzp0qVRqVR2e/vCF77Q4f3cdNNNsXz58p4blHjnnXfi4osvjm3btsWCBQvigQceiKOOOqrWYwEAANDH9K/1AEDtffnLX47Ro0e323bCCSfEUUcdFTt37owBAwbs9fk33XRT/PEf/3FMnTq1B6fs+yZOnBg7d+6MgQMHln7uf/3Xf8Uvf/nLWLJkSVx55ZU9MB0AAAAZiIFAXHDBBfHRj350t/cddNBB+3ma33jrrbdi4MCBUVd34LyAua6urtN/nlu2bImIiN/7vd/rxokAAADI5sD5VzbQ7XZ3zcDfValUorm5Oe6///62txj/9nXyXn755bj88sujsbEx6uvr4/jjj49777233T7evZbet771rfjiF78Yhx12WBx88MGxY8eOiIj493//9/jYxz4WDQ0NcfDBB8ekSZPiRz/60XtmeeKJJ+KUU06Jgw46KMaMGROLFy8ufczr1q2LM844IwYNGhSjR4+Ou++++z2PqVarMW/evDjmmGOivr4+jjjiiPjrv/7rqFare933nq4ZuK/jmzFjRkyaNCkiIi6++OKoVCpx9tlnR0TEpk2b4rLLLovDDz886uvrY+TIkfGJT3wiXnzxxdLHDgAAwIHPKwOB2L59e2zdurXdtmHDhnXouQ888EBceeWVceqpp8bMmTMjImLMmDEREbF58+Y47bTTolKpxDXXXBPDhw+PH/zgB3HFFVfEjh074tprr223r6985SsxcODAuP7666NarcbAgQPj0UcfjQsuuCCamppi3rx5UVdXF/fdd1+cc8458cMf/jBOPfXUiIh45pln4vzzz4/hw4fHDTfcELt27Yp58+ZFY2Njh/8cXn/99fjDP/zDmDZtWlx66aXx4IMPxl/8xV/EwIED4/LLL4+IiNbW1vj4xz8eTzzxRMycOTPGjRsXzzzzTCxYsCA2btxY+tqJHTm+q666Kg477LC46aab4i//8i/jlFNOaTuuiy66KH7605/G7Nmz4+ijj44tW7bEww8/HC+99FIcffTRpWYBAAAggQJI67777isiYre3oiiKF154oYiI4r777mt7zrx584rf/dUxePDgYvr06e/Z/xVXXFGMHDmy2Lp1a7vtn/rUp4qGhobizTffLIqiKFatWlVERPHBD36wbVtRFEVra2vxoQ99qJgyZUrR2tratv3NN98sRo8eXZx33nlt26ZOnVocdNBBxS9/+cu2bT/72c+Kfv36vWfe3Zk0aVIREcVXv/rVtm3VarU4+eSTi0MPPbR4++23i6IoigceeKCoq6srfvjDH7Z7/t13311ERPGjH/2obdtRRx3V7s/l3eNctWpV6eN797nf+c532ra9/vrrRUQUt9566z6PDwAAAIqiKLxNGIg77rgjHn744Xa3riqKIr773e/GhRdeGEVRxNatW9tuU6ZMie3bt8f69evbPWf69OkxaNCgtq83bNgQzz//fPzJn/xJ/Pd//3fb85ubm2Py5Mnx+OOPR2tra7S0tMSKFSti6tSpceSRR7Y9f9y4cTFlypQOz9y/f/+46qqr2r4eOHBgXHXVVbFly5ZYt25dRER85zvfiXHjxsXYsWPbHdM555wTERGrVq3q8Pfr6PHtyaBBg2LgwIGxevXqeP311zv8fQEAAMjL24SBOPXUU/f4ASKd9dprr8Wvf/3ruOeee+Kee+7Z7WPe/VCMd/3uJxo///zzEfGbSLgn27dvj2q1Gjt37owPfehD77n/wx/+cHz/+9/v0MyjRo2KwYMHt9t27LHHRsRvrp942mmnxfPPPx8///nPY/jw4bvdx+8e09509Pje97737fa++vr6uOWWW+K6666LxsbGOO200+KP/uiP4s///M9jxIgRHZ4DAACAPMRAoEe8+4q2P/3TP91j7DrppJPaff3brwr87X3ceuutcfLJJ+92H4cccsg+P7ijO7W2tsaJJ54Yt99++27vP+KII0rtK2Lfx7c31157bVx44YWxfPnyWLFiRfzN3/xNzJ8/Px599NH4yEc+0uFZAAAAyEEMBLqsUqm8Z9vw4cNjyJAh0dLSEueee26n9vvuB5EMHTp0r/sYPnx4DBo0qO2Vdr/tueee6/D3e+WVV6K5ubndqwM3btwYEdH2YRxjxoyJp59+OiZPnrzb4y6jo8fXkf1cd911cd1118Xzzz8fJ598cnz1q1+Nv//7v+/SfAAAABx4XDMQ6LLBgwfHr3/963bb+vXrFxdddFF897vfjZ/85Cfvec5rr722z/02NTXFmDFj4rbbbos33nhjj/vo169fTJkyJZYvXx4vvfRS2/0///nPY8WKFR0+jl27dsXixYvbvn777bdj8eLFMXz48GhqaoqIiGnTpsXLL78cS5Ysec/zd+7cGc3NzR3+fh09vj15880346233mq3bcyYMTFkyJD9+mpJAAAA+g6vDAS6rKmpKR555JG4/fbbY9SoUTF69OiYMGFC3HzzzbFq1aqYMGFCfPrTn47jjjsutm3bFuvXr49HHnkktm3bttf91tXVxd/93d/FBRdcEMcff3xcdtllcdhhh8XLL78cq1atiqFDh8Y///M/R0TEjTfeGP/6r/8aZ511VnzmM5+JXbt2xde//vU4/vjj48c//nGHjmPUqFFxyy23xIsvvhjHHntsfPvb344NGzbEPffcEwMGDIiIiD/7sz+LBx98MK6++upYtWpVnHnmmdHS0hLPPvtsPPjgg7FixYoOX3+xzPHtzsaNG2Py5Mkxbdq0OO6446J///6xbNmy2Lx5c3zqU5/q0AwAAADkIgYCXXb77bfHzJkz44tf/GLs3Lkzpk+fHhMmTIjGxsZYu3ZtfPnLX46HHnoo7rzzzvjABz4Qxx9/fNxyyy0d2vfZZ58da9asia985SuxaNGieOONN2LEiBExYcKEdp/8e9JJJ8WKFStizpw58aUvfSkOP/zwuPHGG+PVV1/tcAx83/veF/fff3/Mnj07lixZEo2NjbFo0aL49Kc/3faYurq6WL58eSxYsCC+8Y1vxLJly+Lggw+OD37wg/FXf/VXbR840lEdPb7dOeKII+LSSy+NlStXxgMPPBD9+/ePsWPHxoMPPhgXXXRRqTkAAADIoVIURVHrIQAAAACAnueagQAAAACQhBgIAAAAAEmIgQAAAACQhBgIAAAAAEmIgQAAAACQhBgIAAAAAEmIgQAAAACQRP9aD/Cukz67oNYj0MfsOrjWE9DXHLSt1hPQl3xg8f+p9Qj0MQ+3fqfWI9BF59VdXOsRgAPcileervUI9DFTRo2v9Qj0MR1Zk3plIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAkIQYCAAAAQBJiIAAAAAAk0b/sE7Zu3Rr33ntvrFmzJjZt2hQRESNGjIgzzjgjZsyYEcOHD+/2IQEA4F3WowAAnVfqlYFPPvlkHHvssbFw4cJoaGiIiRMnxsSJE6OhoSEWLlwYY8eOjaeeeqqnZgUAIDnrUQCArin1ysDZs2fHxRdfHHfffXdUKpV29xVFEVdffXXMnj071qxZs9f9VKvVqFar7ba17toVdf1Lv1ARAIBEenQ9WrREXaVft88MANCblHpl4NNPPx2f/exn37PwioioVCrx2c9+NjZs2LDP/cyfPz8aGhra3V578pEyowAAkFBPrkdfiGd7YGIAgN6lVAwcMWJErF27do/3r127NhobG/e5n7lz58b27dvb3Yafcm6ZUQAASKgn16OjY2x3jgoA0CuVel/u9ddfHzNnzox169bF5MmT2xZamzdvjpUrV8aSJUvitttu2+d+6uvro76+vt02bxEGAGBfenQ96i3CAEACpQrcrFmzYtiwYbFgwYK48847o6WlJSIi+vXrF01NTbF06dKYNm1ajwwKAADWowAAXVP65XiXXHJJXHLJJfHOO+/E1q1bIyJi2LBhMWDAgG4fDgAAfpf1KABA53X6vbkDBgyIkSNHducsAADQYdajAADllfoAEQAAAACg7xIDAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkuhf6wGgsw55uaj1CPQxu+ortR4BADiArHjl6VqPQB8zZdT4Wo8A4JWBAAAAAJCFGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASYiBAAAAAJCEGAgAAAAASXR7DPzVr34Vl19++V4fU61WY8eOHe1urbt2dfcoAAAk1On1aNGynyYEAKidbo+B27Zti/vvv3+vj5k/f340NDS0u7325CPdPQoAAAl1dj36Qjy7nyYEAKid/mWf8L3vfW+v9//iF7/Y5z7mzp0bc+bMabftjP+1uOwoAAAk1FPr0U82zOjKWAAAfULpGDh16tSoVCpRFMUeH1OpVPa6j/r6+qivr2+3ra5/6VEAAEiox9ajlX7dMh8AQG9W+m3CI0eOjIceeihaW1t3e1u/fn1PzAkAABFhPQoA0BWlY2BTU1OsW7duj/fv639pAQCgK6xHAQA6r/R7cz/3uc9Fc3PzHu8/5phjYtWqVV0aCgAA9sR6FACg80rHwLPOOmuv9w8ePDgmTZrU6YEAAGBvrEcBADqv9NuEAQAAAIC+SQwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCT613qAdx3ySmutR6CPaamv1HoE+piiX60noC9Z8crTtR4B2M/83FPWlFHjaz0CcIDzdxM9wSsDAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkhADAQAAACAJMRAAAAAAkigdA3fu3BlPPPFE/OxnP3vPfW+99VZ84xvf6JbBAABgd6xHAQA6r1QM3LhxY4wbNy4mTpwYJ554YkyaNCleffXVtvu3b98el1122T73U61WY8eOHe1urS27yk8PAEAqPbkerVZbe3J0AIBeoVQM/PznPx8nnHBCbNmyJZ577rkYMmRInHnmmfHSSy+V+qbz58+PhoaGdreXf76y1D4AAMinJ9ejN3/99R6aGgCg96gURVF09MGNjY3xyCOPxIknnhgREUVRxGc+85n4/ve/H6tWrYrBgwfHqFGjoqWlZa/7qVarUa1W2207//K7oq5f/04cAlm11FdqPQJ9zNuHOGfouHVfuqvWI9DH1I3YWOsRUujJ9eiA138/6utdUpuOmzJqfK1HAA5wK155utYj0Md0ZE1aarWzc+fO6N///we7SqUSd911V1x44YUxadKk2LixY4vg+vr6GDp0aLubEAgAwL705HpUCAQAMihV4MaOHRtPPfVUjBs3rt32RYsWRUTExz/+8e6bDAAAfof1KABA15T6789PfvKT8Q//8A+7vW/RokVx6aWXRol3HQMAQCnWowAAXVPqmoE96YxLvlrrEehjXDOQslwzkDJcM5CyXDOw72vddGytR6CPcc1AoKe5ZiBldfs1AwEAAACAvksMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkKkVRFLUegt2rVqsxf/78mDt3btTX19d6HPoA5wxlOWcoyzkD+fi5pwznC2U5ZyjLOdN1YmAvtmPHjmhoaIjt27fH0KFDaz0OfYBzhrKcM5TlnIF8/NxThvOFspwzlOWc6TpvEwYAAACAJMRAAAAAAEhCDAQAAACAJMTAXqy+vj7mzZvngph0mHOGspwzlOWcgXz83FOG84WynDOU5ZzpOh8gAgAAAABJeGUgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACQhBgIAAABAEmIgAAAAACTRv9YDvOvYmxbUegT6mF0HF7UegT6m/xuVWo9AH/LslXfVegT6mLoRG2s9Al10Xt3FtR6BPmbFK0/XegT6mCmjxtd6BPoYv2coqyNrUq8MBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAkxEAAAAAASEIMBAAAAIAk+pd9wtatW+Pee++NNWvWxKZNmyIiYsSIEXHGGWfEjBkzYvjw4d0+JAAAvMt6FACg80q9MvDJJ5+MY489NhYuXBgNDQ0xceLEmDhxYjQ0NMTChQtj7Nix8dRTT+1zP9VqNXbs2NHu1rprV6cPAgCAHHp0PVq07IcjAACorUpRFEVHH3zaaafF+PHj4+67745KpdLuvqIo4uqrr44f//jHsWbNmr3u54Ybbogbb7yx3bb3n3N+fGDyx0qMTna7Du7wqQsREdH/jcq+HwT/z7NX3lXrEehj6kZsrPUIKfTkenR0jIsxleO7fWYOXCteebrWI9DHTBk1vtYj0Mf4PUNZHVmTloqBgwYNiv/4j/+IsWPH7vb+Z599Nj7ykY/Ezp0797qfarUa1Wq13bbf/9riqOtf+l3LJCYGUpYYSBliIGWJgftHT65HP9kwI+oq/bptVg58/pFOWWIgZfk9Q1kdWZOWqm8jRoyItWvX7nHxtXbt2mhsbNznfurr66O+vr7dNiEQAIB96dH1qBAIACRQqsBdf/31MXPmzFi3bl1Mnjy5baG1efPmWLlyZSxZsiRuu+22HhkUAACsRwEAuqZUDJw1a1YMGzYsFixYEHfeeWe0tPzmIsv9+vWLpqamWLp0aUybNq1HBgUAAOtRAICuKf3e3EsuuSQuueSSeOedd2Lr1q0RETFs2LAYMGBAtw8HAAC/y3oUAKDzOn2hvgEDBsTIkSO7cxYAAOgw61EAgPLqaj0AAAAAALB/iIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJiIEAAAAAkIQYCAAAAABJ9K/1AO+qHrqr1iPQx9Tt1LIppzrK7xk6bsqo8bUegT7m4dZaT0BXrXjl6VqPQB/j7wrK8nuGsvyeoayOrEnVFAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCS6PQb+6le/issvv3yvj6lWq7Fjx452t+KdXd09CgAACXV2PVqttu6nCQEAaqfbY+C2bdvi/vvv3+tj5s+fHw0NDe1u23/waHePAgBAQp1dj9789df304QAALXTv+wTvve97+31/l/84hf73MfcuXNjzpw57bad8L/vKDsKAAAJ9dR6dMDrv9+luQAA+oLSMXDq1KlRqVSiKIo9PqZSqex1H/X19VFfX9/+OQNKjwIAQEI9tR5tfdPltAGAA1/pFc/IkSPjoYceitbW1t3e1q9f3xNzAgBARFiPAgB0RekY2NTUFOvWrdvj/fv6X1oAAOgK61EAgM4r/d7cz33uc9Hc3LzH+4855phYtWpVl4YCAIA9sR4FAOi80jHwrLPO2uv9gwcPjkmTJnV6IAAA2BvrUQCAznOVZAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIQgwEAAAAgCTEQAAAAABIolIURVHrIdi9arUa8+fPj7lz50Z9fX2tx6EPcM5QlnOGspwzkI+fe8pwvlCWc4aynDNdJwb2Yjt27IiGhobYvn17DB06tNbj0Ac4ZyjLOUNZzhnIx889ZThfKMs5Q1nOma7zNmEAAAAASEIMBAAAAIAkxEAAAAAASEIM7MXq6+tj3rx5LohJhzlnKMs5Q1nOGcjHzz1lOF8oyzlDWc6ZrvMBIgAAAACQhFcGAgAAAEASYiAAAAAAJCEGAgAAAEASYiAAAAAAJCEG9mJ33HFHHH300XHQQQfFhAkTYu3atbUeiV7q8ccfjwsvvDBGjRoVlUolli9fXuuR6OXmz58fp5xySgwZMiQOPfTQmDp1ajz33HO1Hote7K677oqTTjophg4dGkOHDo3TTz89fvCDH9R6LKCHWY9ShjUpZViPUpb1aPcRA3upb3/72zFnzpyYN29erF+/PsaPHx9TpkyJLVu21Ho0eqHm5uYYP3583HHHHbUehT7isccei1mzZsW//du/xcMPPxzvvPNOnH/++dHc3Fzr0eilDj/88Lj55ptj3bp18dRTT8U555wTn/jEJ+KnP/1prUcDeoj1KGVZk1KG9ShlWY92n0pRFEWth+C9JkyYEKecckosWrQoIiJaW1vjiCOOiNmzZ8cXvvCFGk9Hb1apVGLZsmUxderUWo9CH/Laa6/FoYceGo899lhMnDix1uPQR7z//e+PW2+9Na644opajwL0AOtRusKalLKsR+kM69HO8crAXujtt9+OdevWxbnnntu2ra6uLs4999xYs2ZNDScDDlTbt2+PiN/8ZQr70tLSEt/61reiubk5Tj/99FqPA/QA61Fgf7MepQzr0a7pX+sBeK+tW7dGS0tLNDY2ttve2NgYzz77bI2mAg5Ura2tce2118aZZ54ZJ5xwQq3HoRd75pln4vTTT4+33norDjnkkFi2bFkcd9xxtR4L6AHWo8D+ZD1KR1mPdg8xECC5WbNmxU9+8pN44oknaj0KvdyHP/zh2LBhQ2zfvj3+8R//MaZPnx6PPfaYBRgA0CXWo3SU9Wj3EAN7oWHDhkW/fv1i8+bN7bZv3rw5RowYUaOpgAPRNddcE//yL/8Sjz/+eBx++OG1HodebuDAgXHMMcdERERTU1M8+eST8bd/+7exePHiGk8GdDfrUWB/sR6lDOvR7uGagb3QwIEDo6mpKVauXNm2rbW1NVauXOm98EC3KIoirrnmmli2bFk8+uijMXr06FqPRB/U2toa1Wq11mMAPcB6FOhp1qN0B+vRzvHKwF5qzpw5MX369PjoRz8ap556anzta1+L5ubmuOyyy2o9Gr3QG2+8Ef/5n//Z9vULL7wQGzZsiPe///1x5JFH1nAyeqtZs2bFN7/5zfinf/qnGDJkSGzatCkiIhoaGmLQoEE1no7eaO7cuXHBBRfEkUceGf/zP/8T3/zmN2P16tWxYsWKWo8G9BDrUcqyJqUM61HKsh7tPpWiKIpaD8HuLVq0KG699dbYtGlTnHzyybFw4cKYMGFCrceiF1q9enX8wR/8wXu2T58+PZYuXbr/B6LXq1Qqu91+3333xYwZM/bvMPQJV1xxRaxcuTJeffXVaGhoiJNOOik+//nPx3nnnVfr0YAeZD1KGdaklGE9SlnWo91HDAQAAACAJFwzEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIAkxEAAAAACSEAMBAAAAIIn/C+frtYfPwrLqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "#with sparse matrices\n", "fig, axes = plt.subplots(2, 2, figsize=(16, 8), sharex=True)\n", @@ -278,20 +212,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQMAAAGHCAYAAAAEKUSHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmlUlEQVR4nO3deZCU9Z348U9zOBzCGG4sVFiRgKJYS4xBZfCAIBoRY8AzCl6bFXDFwujUbhSyuoPRjXKIaDyDYhQ8oqyIEdDoiouAGHUTj/UmCiI6RMRBmef3h8X87HA2DDbj9/Wq6irn2888/emmwafe9fTTuSzLsgAAAAAAvvXqFXsAAAAAAOCbIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgDfKocffngcfvjhO/QxxowZE7lcboc+xs4ol8vFiBEjdvjjPPHEE5HL5eKJJ57Y7Hbr/xxWrFhRa489dOjQ6NixY95aLpeLMWPGbNP+li1bFj/5yU+iZcuWkcvl4rrrrtvuGQEAtocYCABsldtvvz1yuVzkcrl4+umnN7g/y7LYY489IpfLxY9+9KMiTEhteOaZZ2LMmDHxySefFHuUb4VRo0bF7Nmzo7y8PKZOnRpHH310sUcCABLXoNgDAAB1S6NGjWLatGlx2GGH5a0/+eST8d5770VJSUmRJvvKY489VtTHr+ueeeaZGDt2bAwdOjR22223Yo+zU1izZk00aLBth81z586N448/PkaPHl3LUwEAbBtnBgIABTnmmGNi+vTp8eWXX+atT5s2LXr27Bnt2rWrtceqrq6Ozz//vKDf2WWXXWKXXXaptRmgUaNG2xwDly9fLqoCADsVMRAAKMgpp5wSH330UfzhD3+oWVu7dm3MmDEjTj311I3+zjXXXBOHHHJItGzZMho3bhw9e/aMGTNmbLDd+mvS3XXXXbHffvtFSUlJPProoxER8ac//Sn69OkTjRs3jg4dOsQVV1wRt912W+RyuXjrrbdq9vH31wxcf/25e++9N6688sro0KFDNGrUKI466qh4/fXX8x7/qaeeisGDB8eee+4ZJSUlsccee8SoUaNizZo12/Ravfbaa3HiiSdGu3btolGjRtGhQ4c4+eSTo7KycoPnPH369Nh3332jcePG0atXr3jxxRcjIuLGG2+Mzp07R6NGjeLwww/Pe67rTZ8+PXr27BmNGzeOVq1axemnnx5Lly7dYLu5c+dG7969o2nTprHbbrvF8ccfH3/+859r7h8zZkxcfPHFERHRqVOnmo+F//1jPvjgg9G9e/coKSmJ/fbbr+bP6OuWLl0aZ511VrRt27Zmu1tvvXWD7d57770YNGhQNG3aNNq0aROjRo2KqqqqrXp911uxYkUMGTIkmjdvHi1btox/+Zd/2WhEvvPOO2tepxYtWsTJJ58c77777hb3v7FrBm7p+a3/WH2WZXH99dfXvJYREV988UWMHTs29tlnn2jUqFG0bNkyDjvssLy/UwAAO4qPCQMABenYsWP06tUr7r777hgwYEBERMyaNSsqKyvj5JNPjgkTJmzwO+PHj4+BAwfGaaedFmvXro3f/e53MXjw4Jg5c2Yce+yxedvOnTs37r333hgxYkS0atUqOnbsGEuXLo0jjjgicrlclJeXR9OmTePmm28u6CPJ48aNi3r16sXo0aOjsrIyfvWrX8Vpp50W//M//1OzzfTp0+Ozzz6Lf/7nf46WLVvGggULYuLEifHee+/F9OnTC3qd1q5dG/3794+qqqoYOXJktGvXLpYuXRozZ86MTz75JEpLS2u2feqpp+Khhx6K4cOHR0RERUVF/OhHP4qf//znMXny5Dj//PPj448/jl/96ldx1llnxdy5c2t+9/bbb49hw4bFQQcdFBUVFbFs2bIYP358/Pd//3c8//zzNWelPf744zFgwID4h3/4hxgzZkysWbMmJk6cGIceemgsXrw4OnbsGD/+8Y/j1VdfjbvvvjuuvfbaaNWqVUREtG7duubxnn766bj//vvj/PPPj2bNmsWECRPixBNPjHfeeSdatmwZEV99acYPfvCDmtDZunXrmDVrVpx99tmxatWquPDCCyPiq4/fHnXUUfHOO+/EBRdcELvvvntMnTo17/ltjSFDhkTHjh2joqIinn322ZgwYUJ8/PHH8dvf/rZmmyuvvDJ+8YtfxJAhQ+Kcc86JDz/8MCZOnBhlZWV5r9PW2JrnV1ZWFlOnTo2f/vSn0a9fvzjjjDNqfn/MmDFRUVER55xzTnz/+9+PVatWxcKFC2Px4sXRr1+/gp47AEDBMgCArXDbbbdlEZE999xz2aRJk7JmzZpln332WZZlWTZ48ODsiCOOyLIsy/baa6/s2GOPzfvd9dutt3bt2qx79+7ZkUcembceEVm9evWyl19+OW995MiRWS6Xy55//vmatY8++ihr0aJFFhHZm2++WbPep0+frE+fPjU/z5s3L4uIrFu3bllVVVXN+vjx47OIyF588cVNzpllWVZRUZHlcrns7bffrlm7/PLLsy0dRj3//PNZRGTTp0/f7HYRkZWUlOQ9hxtvvDGLiKxdu3bZqlWratbLy8vznu/atWuzNm3aZN27d8/WrFlTs93MmTOziMguu+yymrUDDzwwa9OmTfbRRx/VrL3wwgtZvXr1sjPOOKNm7eqrr97gNf36rLvsskv2+uuv5+0jIrKJEyfWrJ199tlZ+/btsxUrVuT9/sknn5yVlpbWvM7XXXddFhHZvffeW7PN6tWrs86dO2cRkc2bN2+zr936P4eBAwfmrZ9//vlZRGQvvPBClmVZ9tZbb2X169fPrrzyyrztXnzxxaxBgwZ562eeeWa21157bfC8L7/88oKf3/rfHT58eN52PXr02ODvCADAN8XHhAGAgg0ZMiTWrFkTM2fOjL/97W8xc+bMTX5EOCKicePGNf/98ccfR2VlZfTu3TsWL168wbZ9+vSJfffdN2/t0UcfjV69esWBBx5Ys9aiRYs47bTTtnrmYcOG5V1LsHfv3hER8cYbb2x0ztWrV8eKFSvikEMOiSzL4vnnn9/qx4qImjP/Zs+eHZ999tlmtz3qqKOiY8eONT8ffPDBERFx4oknRrNmzTZYXz/zwoULY/ny5XH++edHo0aNarY79thjo2vXrvFf//VfERHx/vvvx5IlS2Lo0KHRokWLmu0OOOCA6NevXzzyyCNb/bz69u0be++9d94+mjdvXjNTlmVx3333xXHHHRdZlsWKFStqbv3794/KysqaP/dHHnkk2rdvHz/5yU9q9tekSZM477zztnqeiKg5o3K9kSNH1uw/IuL++++P6urqGDJkSN487dq1i3322SfmzZu31Y9VyPPblN122y1efvnleO211wp6ngAAtcHHhAGAgrVu3Tr69u0b06ZNi88++yzWrVuXF3T+3syZM+OKK66IJUuW5F0Pbv011L6uU6dOG6y9/fbb0atXrw3WO3fuvNUz77nnnnk/f+c734mIr+Lkeu+8805cdtll8dBDD+WtR0Tedf62RqdOneKiiy6KX//613HXXXdF7969Y+DAgXH66afnfUR4Y7Otv3+PPfbY6Pr62d5+++2IiPjud7+7weN37do1nn766S1u161bt5g9e3asXr06mjZtusXn9fezRnz1Wq6f6cMPP4xPPvkkbrrpprjppps2uo/ly5fXzNW5c+cN3gcbm3Nz9tlnn7yf995776hXr17NtQ5fe+21yLJsg+3Wa9iw4VY/ViHPb1N++ctfxvHHHx9dunSJ7t27x9FHHx0//elP44ADDtjqOQAAtpUYCABsk1NPPTXOPffc+OCDD2LAgAGbvObaU089FQMHDoyysrKYPHlytG/fPho2bBi33XZbTJs2bYPtv352Xm2qX7/+RtezLIuIiHXr1kW/fv1i5cqVcckll0TXrl2jadOmsXTp0hg6dGhUV1cX/Jj/+Z//GUOHDo3f//738dhjj8UFF1xQc127Dh06bHG2Lc1cDFuaaf3rdPrpp8eZZ5650W13dPT6+7hYXV0duVwuZs2atdH5d911163ed208v7Kysvi///u/mvfFzTffHNdee21MmTIlzjnnnK2eBQBgW4iBAMA2OeGEE+Kf/umf4tlnn4177rlnk9vdd9990ahRo5g9e3beF37cdtttW/1Ye+211wbf/BsRG13bVi+++GK8+uqrcccdd+R92cP2fsPr/vvvH/vvv3/827/9WzzzzDNx6KGHxpQpU+KKK67Y3pFjr732ioiIV155JY488si8+1555ZWa+7++3d/7y1/+Eq1atao5K3BjZ2sWonXr1tGsWbNYt25d9O3bd4vzv/TSS5FlWd7jbmzOzXnttdfyzih9/fXXo7q6uuaj13vvvXdkWRadOnWKLl26FLTvv1fI89ucFi1axLBhw2LYsGHx6aefRllZWYwZM0YMBAB2ONcMBAC2ya677ho33HBDjBkzJo477rhNble/fv3I5XKxbt26mrW33norHnzwwa1+rP79+8f8+fNjyZIlNWsrV66Mu+66a1tG3+ScEfln3WVZFuPHj9+m/a1atSq+/PLLvLX9998/6tWrl/dR6e3xve99L9q0aRNTpkzJ2+esWbPiz3/+c803Nbdv3z4OPPDAuOOOO+KTTz6p2e6ll16Kxx57LI455piatfVR8OvbFaJ+/fpx4oknxn333RcvvfTSBvd/+OGHNf99zDHHxF//+teYMWNGzdpnn322yY/fbsr111+f9/PEiRMjImq+7frHP/5x1K9fP8aOHbvBWZVZlsVHH3201Y9VyPPblL9/vF133TU6d+5ca+8LAIDNcWYgALDNNvUxya879thj49e//nUcffTRceqpp8by5cvj+uuvj86dO8ef/vSnrXqcn//853HnnXdGv379YuTIkdG0adO4+eabY88994yVK1du99lsEV9dY2/vvfeO0aNHx9KlS6N58+Zx3333bXDtwK01d+7cGDFiRAwePDi6dOkSX375ZUydOrUmJtWGhg0bxlVXXRXDhg2LPn36xCmnnBLLli2L8ePHR8eOHWPUqFE121599dUxYMCA6NWrV5x99tmxZs2amDhxYpSWlsaYMWNqtuvZs2dERPzrv/5rnHzyydGwYcM47rjjtup6guuNGzcu5s2bFwcffHCce+65se+++8bKlStj8eLF8fjjj8fKlSsjIuLcc8+NSZMmxRlnnBGLFi2K9u3bx9SpU6NJkyYFvQ5vvvlmDBw4MI4++uiYP39+3HnnnXHqqadGjx49IuKrMwOvuOKKKC8vj7feeisGDRoUzZo1izfffDMeeOCBOO+882L06NG1/vw2Zd99943DDz88evbsGS1atIiFCxfGjBkzYsSIEQU9bwCAbSEGAgA71JFHHhm33HJLjBs3Li688MLo1KlTXHXVVfHWW29tdQzcY489Yt68eXHBBRfEf/zHf0Tr1q1j+PDh0bRp07jgggvyvkl3WzVs2DAefvjhmuv6NWrUKE444YQYMWJETVQqRI8ePaJ///7x8MMPx9KlS6NJkybRo0ePmDVrVvzgBz/Y7nnXGzp0aDRp0iTGjRsXl1xySTRt2jROOOGEuOqqq/Ku49i3b9949NFH4/LLL4/LLrssGjZsGH369Imrrroq7yO2Bx10UPz7v/97TJkyJR599NGorq6ON998s6AY2LZt21iwYEH88pe/jPvvvz8mT54cLVu2jP322y+uuuqqmu2aNGkSc+bMiZEjR8bEiROjSZMmcdppp8WAAQPi6KOP3urHu+eee+Kyyy6LSy+9NBo0aBAjRoyIq6++Om+bSy+9NLp06RLXXnttjB07NiK+el/98Ic/jIEDB271YxXy/DblggsuiIceeigee+yxqKqqir322iuuuOKKuPjiiwuaAwBgW+SyYl6BGgBgO1x44YVx4403xqeffrrJL7YAAAD+P9cMBADqhDVr1uT9/NFHH8XUqVPjsMMOEwIBAGAr+ZgwAFAn9OrVKw4//PDo1q1bLFu2LG655ZZYtWpV/OIXvyj2aAAAUGeIgQBAnXDMMcfEjBkz4qabbopcLhf/+I//GLfcckuUlZUVezQAAKgzXDMQAAAAABLhmoEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEhEg2IPsF6/eoOLPQLwLTf7ry8UewTqkP679yj2CNQxf6ieXuwR2E6ORymUYwsK5fiCQvl3hkLVa/fqlrf5BuYAAAAAAHYCYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARDQr9hRUrVsStt94a8+fPjw8++CAiItq1axeHHHJIDB06NFq3bl3rQwIAAAAA26+gMwOfe+656NKlS0yYMCFKS0ujrKwsysrKorS0NCZMmBBdu3aNhQsXbnE/VVVVsWrVqrxbdbZum58EAAAAALBlBZ0ZOHLkyBg8eHBMmTIlcrlc3n1ZlsXPfvazGDlyZMyfP3+z+6moqIixY8fmrXWKbrF37FfIOAAAAABAAQo6M/CFF16IUaNGbRACIyJyuVyMGjUqlixZssX9lJeXR2VlZd6tU3QtZBQAAAAAoEAFnRnYrl27WLBgQXTtuvFwt2DBgmjbtu0W91NSUhIlJSV5a/Vy9QsZBQAAAAAoUEExcPTo0XHeeefFokWL4qijjqoJf8uWLYs5c+bEb37zm7jmmmt2yKAAAAAAwPYpKAYOHz48WrVqFddee21Mnjw51q376ks/6tevHz179ozbb789hgwZskMGBQAAAAC2T0ExMCLipJNOipNOOim++OKLWLFiRUREtGrVKho2bFjrwwEAAAAAtafgGLhew4YNo3379rU5CwAAAACwAxX0bcIAAAAAQN0lBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJCIBsUeAAAACrFixYq49dZbY/78+fHBBx9ERES7du3ikEMOiaFDh0br1q2LPCEAwM7LmYEAANQZzz33XHTp0iUmTJgQpaWlUVZWFmVlZVFaWhoTJkyIrl27xsKFC7e4n6qqqli1alXerTpb9w08AwCA4nJmIAAAdcbIkSNj8ODBMWXKlMjlcnn3ZVkWP/vZz2LkyJExf/78ze6noqIixo4dm7fWKbrF3rFfrc8MALAzcWYgAAB1xgsvvBCjRo3aIARGRORyuRg1alQsWbJki/spLy+PysrKvFun6LoDJgYA2Lk4MxAAgDqjXbt2sWDBgujadePhbsGCBdG2bdst7qekpCRKSkry1url6tfKjAAAOzMxEACAOmP06NFx3nnnxaJFi+Koo46qCX/Lli2LOXPmxG9+85u45pprijwlAMDOSwwEAKDOGD58eLRq1SquvfbamDx5cqxb99WXftSvXz969uwZt99+ewwZMqTIUwIA7LzEQAAA6pSTTjopTjrppPjiiy9ixYoVERHRqlWraNiwYZEnAwDY+YmBAADUSQ0bNoz27dsXewwAgDrFtwkDAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiWhQ7AFgW83+6wvFHoE6pv/uPYo9AgAAABSVMwMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBG1HgPffffdOOussza7TVVVVaxatSrvVp2tq+1RAAAAAICvaVDbO1y5cmXccccdceutt25ym4qKihg7dmzeWqfoFnvHfrU9DgAAbJXZf32h2CNQx/TfvUexR6CO8e8MhfLvDIX6Q/WWtyk4Bj700EObvf+NN97Y4j7Ky8vjoosuyls7oXRooaMAAAAAAAUoOAYOGjQocrlcZFm2yW1yudxm91FSUhIlJSV5a/Vy9QsdBQAAAAAoQMHXDGzfvn3cf//9UV1dvdHb4sWLd8ScAAAAAMB2KjgG9uzZMxYtWrTJ+7d01iAAAAAAUBwFf0z44osvjtWrV2/y/s6dO8e8efO2aygAAAAAoPYVHAN79+692fubNm0affr02eaBAAAAAIAdo+CPCQMAAAAAdZMYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARDQo9gDrzf7rC8UegTqm/+49ij0C8C3m/0sAAMC3kTMDAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAwLfKu+++G2edddZmt6mqqopVq1bl3aqqqr+hCQEAikcMBADgW2XlypVxxx13bHabioqKKC0tzbuNm/jxNzQhAEDxNCj2AAAAUIiHHnpos/e/8cYbW9xHeXl5XHTRRXlrDT/+x+2aCwCgLhADAQCoUwYNGhS5XC6yLNvkNrlcbrP7KCkpiZKSkry16s98aAYA+PZzxAMAQJ3Svn37uP/++6O6unqjt8WLFxd7RACAnZYYCABAndKzZ89YtGjRJu/f0lmDAAAp8zFhAADqlIsvvjhWr169yfs7d+4c8+bN+wYnAgCoO8RAAADqlN69e2/2/qZNm0afPn2+oWkAAOoWHxMGAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJCIgmPgmjVr4umnn47//d//3eC+zz//PH77299ucR9VVVWxatWqvFtVVXWhowAAAAAABSgoBr766qvRrVu3KCsri/333z/69OkT77//fs39lZWVMWzYsC3up6KiIkpLS/Nu4yZ+XPj0AAAAAMBWKygGXnLJJdG9e/dYvnx5vPLKK9GsWbM49NBD45133inoQcvLy6OysjLvdunI7xS0DwAAAACgMA0K2fiZZ56Jxx9/PFq1ahWtWrWKhx9+OM4///zo3bt3zJs3L5o2bbpV+ykpKYmSkpK8terPXL4QAAAAAHakggrcmjVrokGD/98Pc7lc3HDDDXHcccdFnz594tVXX631AQEAAACA2lHQmYFdu3aNhQsXRrdu3fLWJ02aFBERAwcOrL3JAAAAAIBaVdCZgSeccELcfffdG71v0qRJccopp0SWZbUyGAAAAABQuwqKgeXl5fHII49s8v7JkydHdXX1dg8FAAAAANQ+39oBAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBE5LIsy4o9BBtXVVUVFRUVUV5eHiUlJcUehzrAe4ZCec9QKO8ZSI+/9xTC+4VCec9QKO+Z7ScG7sRWrVoVpaWlUVlZGc2bNy/2ONQB3jMUynuGQnnPQHr8vacQ3i8UynuGQnnPbD8fEwYAAACARIiBAAAAAJAIMRAAAAAAEiEG7sRKSkri8ssvd0FMtpr3DIXynqFQ3jOQHn/vKYT3C4XynqFQ3jPbzxeIAAAAAEAinBkIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMXAndv3110fHjh2jUaNGcfDBB8eCBQuKPRI7qT/+8Y9x3HHHxe677x65XC4efPDBYo/ETq6ioiIOOuigaNasWbRp0yYGDRoUr7zySrHHYid2ww03xAEHHBDNmzeP5s2bR69evWLWrFnFHgvYwRyPUgjHpBTC8SiFcjxae8TAndQ999wTF110UVx++eWxePHi6NGjR/Tv3z+WL19e7NHYCa1evTp69OgR119/fbFHoY548sknY/jw4fHss8/GH/7wh/jiiy/ihz/8YaxevbrYo7GT6tChQ4wbNy4WLVoUCxcujCOPPDKOP/74ePnll4s9GrCDOB6lUI5JKYTjUQrleLT25LIsy4o9BBs6+OCD46CDDopJkyZFRER1dXXsscceMXLkyLj00kuLPB07s1wuFw888EAMGjSo2KNQh3z44YfRpk2bePLJJ6OsrKzY41BHtGjRIq6++uo4++yziz0KsAM4HmV7OCalUI5H2RaOR7eNMwN3QmvXro1FixZF3759a9bq1asXffv2jfnz5xdxMuDbqrKyMiK++p8pbMm6devid7/7XaxevTp69epV7HGAHcDxKPBNczxKIRyPbp8GxR6ADa1YsSLWrVsXbdu2zVtv27Zt/OUvfynSVMC3VXV1dVx44YVx6KGHRvfu3Ys9DjuxF198MXr16hWff/557LrrrvHAAw/EvvvuW+yxgB3A8SjwTXI8ytZyPFo7xECAxA0fPjxeeumlePrpp4s9Cju57373u7FkyZKorKyMGTNmxJlnnhlPPvmkAzAAYLs4HmVrOR6tHWLgTqhVq1ZRv379WLZsWd76smXLol27dkWaCvg2GjFiRMycOTP++Mc/RocOHYo9Dju5XXbZJTp37hwRET179oznnnsuxo8fHzfeeGORJwNqm+NR4JvieJRCOB6tHa4ZuBPaZZddomfPnjFnzpyaterq6pgzZ47PwgO1IsuyGDFiRDzwwAMxd+7c6NSpU7FHog6qrq6OqqqqYo8B7ACOR4EdzfEotcHx6LZxZuBO6qKLLoozzzwzvve978X3v//9uO6662L16tUxbNiwYo/GTujTTz+N119/vebnN998M5YsWRItWrSIPffcs4iTsbMaPnx4TJs2LX7/+99Hs2bN4oMPPoiIiNLS0mjcuHGRp2NnVF5eHgMGDIg999wz/va3v8W0adPiiSeeiNmzZxd7NGAHcTxKoRyTUgjHoxTK8WjtyWVZlhV7CDZu0qRJcfXVV8cHH3wQBx54YEyYMCEOPvjgYo/FTuiJJ56II444YoP1M888M26//fZvfiB2erlcbqPrt912WwwdOvSbHYY64eyzz445c+bE+++/H6WlpXHAAQfEJZdcEv369Sv2aMAO5HiUQjgmpRCORymU49HaIwYCAAAAQCJcMxAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEjE/wNyswhV/yxGqAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "mmp_agents = agents = Agent(\n", " A=A,\n", @@ -331,20 +254,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQMAAAGHCAYAAAAEKUSHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkh0lEQVR4nO3deZCU9Z348U9zDQg4iJzRCBouDYjJKIRbxYhEw2IqHhFLxphVN4AlFkTRUsA1kl11RUTF6CrGCBo1XqsGEPGIskFw0UjWK8KqiVweoKOMyDy/P1LMLx3OloGe8ft6VXVZ832efvrTYwNPvevp7lyWZVkAAAAAAF959Yo9AAAAAACwZ4iBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAX3Hl5eXRrFmzPfJYHTt2jPLy8u3us2LFisjlcnH11VfX2OM+9dRTkcvl4qmnnqpeKy8vj44dO37pY1511VVx0EEHRf369eOwww7b5RkBAGoDMRAA2GOGDRsWe+21V3z88cfb3GfEiBHRqFGjeP/99yMiIpfLRS6Xi5/85Cdb3f+SSy6p3mft2rXV6+Xl5dXruVwu9t577+jZs2dcc801UVlZWbNPrBb49NNPY9KkSXkxjC9v7ty58bOf/Sz69esXt99+e1x55ZXFHgkAoEY0KPYAAEA6RowYEY888kg88MADccYZZ2yx/dNPP42HHnoojjvuuNh3332r1xs3bhz3339/3HjjjdGoUaO8+8yePTsaN24cGzZs2OJ4JSUlceutt0ZExEcffRT3339/jBs3Ll544YW4++67a/jZFdenn34akydPjoiII488srjD1BK33HJLVFVVfan7Pvnkk1GvXr34z//8zy1ecwAAdZkrAwGAPWbYsGHRvHnzmDVr1la3P/TQQ1FRUREjRozIWz/uuONi/fr18fjjj+etP//887F8+fI4/vjjt3q8Bg0axOmnnx6nn356jB49OubPnx+HH3543HPPPfHXv/61Zp4UtVbDhg2jpKTkS9139erV0aRJEyEQAPjKEQMBgD2mSZMm8YMf/CDmz58fq1ev3mL7rFmzonnz5jFs2LC89f322y8GDhy4RUS86667okePHtG9e/edevx69epVXzW3YsWKbe63cePGmDx5cnTu3DkaN24c++67b/Tv3z/mzZtXvc/mz+F7++2344QTTohmzZrFfvvtFzfccENERPzxj3+Mo48+Opo2bRodOnTYagB966234qSTToqWLVvGXnvtFd/5znfi0Ucf3WK/1atXx1lnnRVt27aNxo0bR8+ePeOOO+6o3r5ixYpo3bp1RERMnjy5+q3RkyZNyjvOX/7ylxg+fHg0a9YsWrduHePGjYtNmzbl7VNVVRVTp06Nb37zm9G4ceNo27ZtnHPOOfHhhx/m7ZdlWVxxxRWx//77x1577RVHHXVULFu2bJu/02259tpro0OHDtGkSZMYNGhQvPLKK1vs8+qrr8YPf/jDaNmyZTRu3DgOP/zwePjhh3d47K19ZuDOPL9cLhe33357VFRUVP8uZ86cGRER8+bNi/79+0eLFi2iWbNm0bVr17j44osLft4AAMUiBgIAe9SIESPiiy++iN/85jd56x988EHMmTMnTjzxxGjSpMkW9zvttNPikUceiU8++SQiIr744ou4995747TTTivo8f/85z9HROS9DfkfTZo0KSZPnhxHHXVUTJ8+PS655JI44IAD4sUXX8zbb9OmTTF06ND4+te/Hv/+7/8eHTt2jNGjR8fMmTPjuOOOi8MPPzz+7d/+LZo3bx5nnHFGLF++vPq+q1atir59+8acOXPipz/9afz85z+PDRs2xLBhw+KBBx6o3u+zzz6LI488Mu68884YMWJEXHXVVVFaWhrl5eVx3XXXRURE69at46abboqIiBNPPDHuvPPOuPPOO+MHP/hB3qxDhgyJfffdN66++uoYNGhQXHPNNfHLX/4y7zmdc845MX78+OjXr19cd911ceaZZ8Zdd90VQ4YMiY0bN1bvd9lll8Wll14aPXv2rP6ijWOPPTYqKip2+v/Fr371q5g2bVqMGjUqJkyYEK+88kocffTRsWrVqup9li1bFt/5znfif//3f+Oiiy6Ka665Jpo2bRrDhw/P+z3trJ15fnfeeWcMGDAgSkpKqn+XAwcOjGXLlsUJJ5wQlZWVcfnll8c111wTw4YNi+eee67gOQAAiiYDANiDvvjii6x9+/ZZnz598tZnzJiRRUQ2Z86cvPWIyEaNGpV98MEHWaNGjbI777wzy7Ise/TRR7NcLpetWLEimzhxYhYR2Zo1a6rvN3LkyKxp06bZmjVrsjVr1mRvvvlmduWVV2a5XC479NBDtztjz549s+OPP367+4wcOTKLiOzKK6+sXvvwww+zJk2aZLlcLrv77rur11999dUsIrKJEydWr51//vlZRGTPPvts9drHH3+cHXjggVnHjh2zTZs2ZVmWZVOnTs0iIvv1r39dvd/nn3+e9enTJ2vWrFm2fv36LMuybM2aNVs8xj/Oevnll+etf+tb38rKysqqf3722WeziMjuuuuuvP1+97vf5a2vXr06a9SoUXb88cdnVVVV1ftdfPHFWURkI0eO3O7vbvny5VlEZE2aNMnefffd6vU//OEPWURkY8eOrV4bPHhw1qNHj2zDhg3Va1VVVVnfvn2zzp07V68tWLAgi4hswYIFec+7Q4cOBT+/zfdt2rRp3n7XXnvtFq8zAIC6xpWBAMAeVb9+/Tj11FNj4cKFeW/VnTVrVrRt2zYGDx681fvts88+cdxxx8Xs2bOr9+/bt2906NBhm49VUVERrVu3jtatW0enTp3i4osvjj59+uzwirIWLVrEsmXL4o033tjh8/n7bzlu0aJFdO3aNZo2bRonn3xy9XrXrl2jRYsW8dZbb1WvPfbYY9GrV6/o379/9VqzZs3i7LPPjhUrVsSf/vSn6v3atWsXP/rRj6r3a9iwYZx33nnxySefxNNPP73DGTc799xz834eMGBA3kz33ntvlJaWxne/+91Yu3Zt9a2srCyaNWsWCxYsiIiIJ554Ij7//PMYM2ZM5HK56vuff/75Oz1LRMTw4cNjv/32q/65V69e0bt373jsscci4m9Xiz755JNx8sknx8cff1w9z/vvvx9DhgyJN954I/7yl7/s9OPt7PPblhYtWkTE3z7b8st+MQkAQLGJgQDAHrf5C0I2f47eu+++G88++2yceuqpUb9+/W3e77TTTot58+bF22+/HQ8++OAO3yLcuHHjmDdvXsybNy+eeeaZeOedd+K5556Lgw46aLv3u/zyy+Ojjz6KLl26RI8ePWL8+PHx8ssvb/X4mz+rb7PS0tLYf//98yLZ5vW//1y6//u//4uuXbtuccyDDz64evvm/3bu3Dnq1au33f12ZGuz7rPPPnkzvfHGG7Fu3bpo06ZNdUTdfPvkk0+qP+dx82N27tw573itW7eOffbZZ6fm2dr9IyK6dOlSHYnffPPNyLIsLr300i3mmThxYkTEVj97clt29vltyymnnBL9+vWLn/zkJ9G2bds49dRT4ze/+Y0wCADUKQ2KPQAAkJ6ysrLo1q1bzJ49Oy6++OKYPXt2ZFm2xbcI/6Nhw4ZFSUlJjBw5MiorK/Ouvtua+vXrxzHHHFPwfAMHDow///nP8dBDD8XcuXPj1ltvjWuvvTZmzJiRdyXgtsLlttazLCt4lpqyvci6WVVVVbRp0ybuuuuurW7/x5i4u22ObOPGjYshQ4ZsdZ9OnToVdLxdeX5NmjSJZ555JhYsWBCPPvpo/O53v4t77rknjj766Jg7d+5O/Y4BAIpNDAQAimLEiBFx6aWXxssvvxyzZs2Kzp07xxFHHLHd+zRp0iSGDx8ev/71r2Po0KHRqlWr3TZfy5Yt48wzz4wzzzwzPvnkkxg4cGBMmjQpLwbuig4dOsRrr722xfqrr75avX3zf19++eWoqqrKuzrwH/f7xysRv4xvfOMb8cQTT0S/fv22+iUufz97xN+utPv7qyzXrFmzxbcOb8/W3ob9+uuvV38D8OZjN2zY8EtF3X+0s89ve+rVqxeDBw+OwYMHx3/8x3/ElVdeGZdcckksWLCgRmYEANjdvE0YACiKzVcBXnbZZbF06dIdXhW42bhx42LixIlx6aWX7rbZ3n///byfmzVrFp06dYrKysoae4zvfe97sWjRoli4cGH1WkVFRfzyl7+Mjh07xiGHHFK938qVK+Oee+6p3u+LL76I66+/Ppo1axaDBg2KiIi99torIiI++uijLz3TySefHJs2bYp//dd/3WLbF198UX3sY445Jho2bBjXX3993tWOU6dOLejxHnzwwbzP/Fu0aFH84Q9/iKFDh0ZERJs2beLII4+Mm2++Od57770t7r9mzZqCHm9nn9+2fPDBB1usHXbYYRERNfraAADYnVwZCAAUxYEHHhh9+/aNhx56KCJip2Ngz549o2fPnrtztDjkkEPiyCOPjLKysmjZsmUsXrw47rvvvhg9enSNPcZFF10Us2fPjqFDh8Z5550XLVu2jDvuuCOWL18e999/f/VVgGeffXbcfPPNUV5eHkuWLImOHTvGfffdF88991xMnTo1mjdvHhF/u2rykEMOiXvuuSe6dOkSLVu2jO7du0f37t13eqZBgwbFOeecE1OmTImlS5fGscceGw0bNow33ngj7r333rjuuuvihz/8YbRu3TrGjRsXU6ZMiRNOOCG+973vxf/8z//E448/XtDVmp06dYr+/fvHv/zLv0RlZWVMnTo19t133/jZz35Wvc8NN9wQ/fv3jx49esQ///M/x0EHHRSrVq2KhQsXxrvvvhsvvfRSjT+/bbn88svjmWeeieOPPz46dOgQq1evjhtvvDH233//vC+CAQCozcRAAKBoRowYEc8//3z06tWroM9+293OO++8ePjhh2Pu3LlRWVkZHTp0iCuuuCLGjx9fY4/Rtm3beP755+PCCy+M66+/PjZs2BCHHnpoPPLII3H88cdX79ekSZN46qmn4qKLLoo77rgj1q9fH127do3bb789ysvL84556623xpgxY2Ls2LHx+eefx8SJEwuKgRERM2bMiLKysrj55pvj4osvjgYNGkTHjh3j9NNPj379+lXvd8UVV0Tjxo1jxowZsWDBgujdu3fMnTs3b/YdOeOMM6JevXoxderUWL16dfTq1SumT58e7du3r97nkEMOicWLF8fkyZNj5syZ8f7770ebNm3iW9/6Vlx22WUFPbdCnt/WDBs2LFasWBG33XZbrF27Nlq1ahWDBg2KyZMnR2lpacGzAAAUQy4r5idZAwAAAAB7jM8MBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJKJBsQfY7Lv1Tir2CMBX3Jy/vlTsEahDhnytZ7FHoI6ZV3VvsUdgFzkfpVDOLSiU8wsK5e8ZClWv3es73mcPzAEAAAAA1AJiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBENCr3D2rVr47bbbouFCxfGypUrIyKiXbt20bdv3ygvL4/WrVvX+JAAAAAAwK4r6MrAF154Ibp06RLTpk2L0tLSGDhwYAwcODBKS0tj2rRp0a1bt1i8ePEOj1NZWRnr16/Pu1Vlm770kwAAAAAAdqygKwPHjBkTJ510UsyYMSNyuVzetizL4txzz40xY8bEwoULt3ucKVOmxOTJk/PWDoyD4xvxzULGAQAAAAAKUNCVgS+99FKMHTt2ixAYEZHL5WLs2LGxdOnSHR5nwoQJsW7durzbgdGtkFEAAAAAgAIVdGVgu3btYtGiRdGt29bD3aJFi6Jt27Y7PE5JSUmUlJTkrdXL1S9kFAAAAACgQAXFwHHjxsXZZ58dS5YsicGDB1eHv1WrVsX8+fPjlltuiauvvnq3DAoAAAAA7JqCYuCoUaOiVatWce2118aNN94Ymzb97Us/6tevH2VlZTFz5sw4+eSTd8ugAAAAAMCuKSgGRkSccsopccopp8TGjRtj7dq1ERHRqlWraNiwYY0PBwAAAADUnIJj4GYNGzaM9u3b1+QsAAAAAMBuVNC3CQMAAAAAdZcYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCIaFHsAAAAoxNq1a+O2226LhQsXxsqVKyMiol27dtG3b98oLy+P1q1bF3lCAIDay5WBAADUGS+88EJ06dIlpk2bFqWlpTFw4MAYOHBglJaWxrRp06Jbt26xePHiHR6nsrIy1q9fn3eryjbtgWcAAFBcrgwEAKDOGDNmTJx00kkxY8aMyOVyeduyLItzzz03xowZEwsXLtzucaZMmRKTJ0/OWzswDo5vxDdrfGYAgNrElYEAANQZL730UowdO3aLEBgRkcvlYuzYsbF06dIdHmfChAmxbt26vNuB0W03TAwAULu4MhAAgDqjXbt2sWjRoujWbevhbtGiRdG2bdsdHqekpCRKSkry1url6tfIjAAAtZkYCABAnTFu3Lg4++yzY8mSJTF48ODq8Ldq1aqYP39+3HLLLXH11VcXeUoAgNpLDAQAoM4YNWpUtGrVKq699tq48cYbY9Omv33pR/369aOsrCxmzpwZJ598cpGnBACovcRAAADqlFNOOSVOOeWU2LhxY6xduzYiIlq1ahUNGzYs8mQAALWfGAgAQJ3UsGHDaN++fbHHAACoU3ybMAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJCIBsUeAGBPGfK1nsUeAQAAAIrKlYEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkIgaj4HvvPNO/PjHP97uPpWVlbF+/fq8W1W2qaZHAQAAAAD+Ti7LsqwmD/jSSy/Ft7/97di0adtxb9KkSTF58uS8tQPj4PhG7ps1OQoAwB4zr+reYo/ALqpa2aXYI1DHDPlaz2KPQB0z568vFXsE6hh/z1ConTknbVDoQR9++OHtbn/rrbd2eIwJEybEBRdckLd2Yml5oaMAAAAAAAUoOAYOHz48crlcbO+Cwlwut91jlJSURElJSd5avVz9QkcBAAAAAApQ8GcGtm/fPn77299GVVXVVm8vvvji7pgTAAAAANhFBcfAsrKyWLJkyTa37+iqQQAAAACgOAp+m/D48eOjoqJim9s7deoUCxYs2KWhAAAAAICaV3AMHDBgwHa3N23aNAYNGvSlBwIAAAAAdo+C3yYMAAAAANRNYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABLRoNgDbDbnry8VewTgK27I13oWewTqEP8uAQAAX0WuDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAABfKe+88078+Mc/3u4+lZWVsX79+rxbZWXVHpoQAKB4xEAAAL5SPvjgg7jjjju2u8+UKVOitLQ07/aL6z/cQxMCABRPg2IPAAAAhXj44Ye3u/2tt97a4TEmTJgQF1xwQd5aww+/vUtzAQDUBWIgAAB1yvDhwyOXy0WWZdvcJ5fLbfcYJSUlUVJSkrdW9ak3zQAAX33OeAAAqFPat28fv/3tb6OqqmqrtxdffLHYIwIA1FpiIAAAdUpZWVksWbJkm9t3dNUgAEDKvE0YAIA6Zfz48VFRUbHN7Z06dYoFCxbswYkAAOoOMRAAgDplwIAB293etGnTGDRo0B6aBgCgbvE2YQAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiSg4Bn722Wfx+9//Pv70pz9tsW3Dhg3xq1/9aofHqKysjPXr1+fdKiurCh0FAAAAAChAQTHw9ddfj4MPPjgGDhwYPXr0iEGDBsV7771XvX3dunVx5pln7vA4U6ZMidLS0rzbL67/sPDpAQAAAICdVlAMvPDCC6N79+6xevXqeO2116J58+bRr1+/ePvttwt60AkTJsS6devybheN2aegYwAAAAAAhWlQyM7PP/98PPHEE9GqVato1apVPPLII/HTn/40BgwYEAsWLIimTZvu1HFKSkqipKQkb63qUx9fCAAAAAC7U0EF7rPPPosGDf5/P8zlcnHTTTfF97///Rg0aFC8/vrrNT4gAAAAAFAzCroysFu3brF48eI4+OCD89anT58eERHDhg2ruckAAAAAgBpV0JWBJ554YsyePXur26ZPnx4/+tGPIsuyGhkMAAAAAKhZBcXACRMmxGOPPbbN7TfeeGNUVVXt8lAAAAAAQM3zrR0AAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEiEGAgAAAAAiRADAQAAACARYiAAAAAAJEIMBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEAMBAAAAIBFiIAAAAAAkQgwEAAAAgESIgQAAAACQCDEQAAAAABIhBgIAAABAIsRAAAAAAEhELsuyrNhDsHWVlZUxZcqUmDBhQpSUlBR7HOoArxkK5TVDobxmID3+3FMIrxcK5TVDobxmdp0YWIutX78+SktLY926dbH33nsXexzqAK8ZCuU1Q6G8ZiA9/txTCK8XCuU1Q6G8ZnadtwkDAAAAQCLEQAAAAABIhBgIAAAAAIkQA2uxkpKSmDhxog/EZKd5zVAorxkK5TUD6fHnnkJ4vVAorxkK5TWz63yBCAAAAAAkwpWBAAAAAJAIMRAAAAAAEiEGAgAAAEAixEAAAAAASIQYCAAAAACJEANrsRtuuCE6duwYjRs3jt69e8eiRYuKPRK11DPPPBPf//7342tf+1rkcrl48MEHiz0StdyUKVPiiCOOiObNm0ebNm1i+PDh8dprrxV7LGqxm266KQ499NDYe++9Y++9944+ffrE448/XuyxgN3M+SiFcE5KIZyPUijnozVHDKyl7rnnnrjgggti4sSJ8eKLL0bPnj1jyJAhsXr16mKPRi1UUVERPXv2jBtuuKHYo1BHPP300zFq1Kj47//+75g3b15s3Lgxjj322KioqCj2aNRS+++/f/ziF7+IJUuWxOLFi+Poo4+Of/qnf4ply5YVezRgN3E+SqGck1II56MUyvlozcllWZYVewi21Lt37zjiiCNi+vTpERFRVVUVX//612PMmDFx0UUXFXk6arNcLhcPPPBADB8+vNijUIesWbMm2rRpE08//XQMHDiw2ONQR7Rs2TKuuuqqOOuss4o9CrAbOB9lVzgnpVDOR/kynI9+Oa4MrIU+//zzWLJkSRxzzDHVa/Xq1YtjjjkmFi5cWMTJgK+qdevWRcTf/jGFHdm0aVPcfffdUVFREX369Cn2OMBu4HwU2NOcj1II56O7pkGxB2BLa9eujU2bNkXbtm3z1tu2bRuvvvpqkaYCvqqqqqri/PPPj379+kX37t2LPQ612B//+Mfo06dPbNiwIZo1axYPPPBAHHLIIcUeC9gNnI8Ce5LzUXaW89GaIQYCJG7UqFHxyiuvxO9///tij0It17Vr11i6dGmsW7cu7rvvvhg5cmQ8/fTTTsAAgF3ifJSd5Xy0ZoiBtVCrVq2ifv36sWrVqrz1VatWRbt27Yo0FfBVNHr06Piv//qveOaZZ2L//fcv9jjUco0aNYpOnTpFRERZWVm88MILcd1118XNN99c5MmAmuZ8FNhTnI9SCOejNcNnBtZCjRo1irKyspg/f371WlVVVcyfP9974YEakWVZjB49Oh544IF48skn48ADDyz2SNRBVVVVUVlZWewxgN3A+SiwuzkfpSY4H/1yXBlYS11wwQUxcuTIOPzww6NXr14xderUqKioiDPPPLPYo1ELffLJJ/Hmm29W/7x8+fJYunRptGzZMg444IAiTkZtNWrUqJg1a1Y89NBD0bx581i5cmVERJSWlkaTJk2KPB210YQJE2Lo0KFxwAEHxMcffxyzZs2Kp556KubMmVPs0YDdxPkohXJOSiGcj1Io56M1J5dlWVbsIdi66dOnx1VXXRUrV66Mww47LKZNmxa9e/cu9ljUQk899VQcddRRW6yPHDkyZs6cuecHotbL5XJbXb/99tujvLx8zw5DnXDWWWfF/Pnz47333ovS0tI49NBD48ILL4zvfve7xR4N2I2cj1II56QUwvkohXI+WnPEQAAAAABIhM8MBAAAAIBEiIEAAAAAkAgxEAAAAAASIQYCAAAAQCLEQAAAAABIhBgIAAAAAIkQAwEAAAAgEWIgAAAAACRCDAQAAACARIiBAAAAAJAIMRAAAAAAEvH/AIQkWF9ePsqIAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "vmp_agents = agents = Agent(\n", " A=A,\n", @@ -392,7 +304,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.7" + "version": "3.12.3" } }, "nbformat": 4,