Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace summarize_vars usage with analyze_vars #114

Merged
merged 1 commit into from
Sep 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion book/graphs/other/cig01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ The corresponding table is simply obtained using the `rtables` framework:
```{r table6, test = list(table_v6 = "table")}
lyt <- basic_table() %>%
split_cols_by(var = "ARMCD") %>%
summarize_vars(vars = "AVAL", .stats = c("mean_sd", "median"))
analyze_vars(vars = "AVAL", .stats = c("mean_sd", "median"))
table <- build_table(lyt = lyt, df = adlb)
table
```
Expand Down
2 changes: 1 addition & 1 deletion book/graphs/other/mng01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ plot
plot <- g_lineplot(
df = adlb_f,
alt_counts_df = adsl_f,
control = control_summarize_vars(conf_level = 0.80),
control = control_analyze_vars(conf_level = 0.80),
title = "Plot of Mean and 80% Confidence Limits by Visit",
subtitle = "Laboratory Test:"
)
Expand Down
8 changes: 4 additions & 4 deletions book/tables/adverse-events/aet04_pi.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ full_table_aet04_pi <- function(adsl, adae_max) {
.stats = "unique",
.labels = "Total number of patients with at least one adverse event"
) %>%
summarize_vars(
analyze_vars(
"AEDECOD",
na.rm = FALSE,
denom = "N_col",
Expand Down Expand Up @@ -241,7 +241,7 @@ full_table <- basic_table() %>%
.stats = "unique",
.labels = "Total number of patients with at least one adverse event"
) %>%
summarize_vars(
analyze_vars(
"AEDECOD",
na.rm = FALSE,
denom = "N_col",
Expand Down Expand Up @@ -298,7 +298,7 @@ full_table <- basic_table() %>%
.stats = "unique",
.labels = "Total number of patients with at least one adverse event"
) %>%
summarize_vars(
analyze_vars(
"AEDECOD",
na.rm = FALSE,
denom = "N_col",
Expand Down Expand Up @@ -345,7 +345,7 @@ col_counts <- rep(table(adsl$ACTARM), each = length(grade_groups))
full_table <- basic_table() %>%
split_cols_by("ACTARM") %>%
split_cols_by_groups("MAXAETOXGR", groups = grade_groups) %>%
summarize_vars(
analyze_vars(
"AEDECOD",
na.rm = FALSE,
denom = "N_col",
Expand Down
16 changes: 8 additions & 8 deletions book/tables/efficacy/dort01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
.labels = "Responders",
.stats = "count"
) %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders with subsequent event (%)"),
Expand All @@ -68,7 +68,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 2L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders without subsequent event (%)"),
Expand Down Expand Up @@ -105,7 +105,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
.labels = "Responders",
.stats = "count"
) %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders with subsequent event (%)"),
Expand All @@ -121,7 +121,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 2L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders without subsequent event (%)"),
Expand Down Expand Up @@ -160,7 +160,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
.labels = "Responders",
.stats = "count"
) %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders with subsequent event (%)"),
Expand All @@ -176,7 +176,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 2L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders without subsequent event (%)"),
Expand Down Expand Up @@ -215,7 +215,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
.labels = "Responders",
.stats = "count"
) %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders with subsequent event (%)"),
Expand All @@ -231,7 +231,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 2L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Responders without subsequent event (%)"),
Expand Down
2 changes: 1 addition & 1 deletion book/tables/efficacy/mmrmt01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ baseline_dat <- adqs %>%
b <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARMCD") %>%
split_rows_by("AVISIT") %>%
summarize_vars("AVAL") %>%
analyze_vars("AVAL") %>%
append_topleft(" Statistics") %>%
build_table(baseline_dat, alt_counts_df = adsl_sub)

Expand Down
24 changes: 12 additions & 12 deletions book/tables/efficacy/ttet01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(
var = "ARM", ref_group = "A: Drug X"
) %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)")
Expand All @@ -62,7 +62,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 1L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
Expand Down Expand Up @@ -102,12 +102,12 @@ result
```{r variant2, test = list(result_v2 = "result")}
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", ref_group = "A: Drug X") %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)")
) %>%
summarize_vars(
analyze_vars(
"is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
Expand Down Expand Up @@ -144,7 +144,7 @@ result
```{r variant3, test = list(result_v3 = "result")}
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", ref_group = "A: Drug X") %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)")
Expand All @@ -158,7 +158,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 1L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
Expand Down Expand Up @@ -212,7 +212,7 @@ result
```{r variant4, test = list(result_v4 = "result")}
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", ref_group = "A: Drug X") %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)")
Expand All @@ -226,7 +226,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 1L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
Expand Down Expand Up @@ -271,7 +271,7 @@ result
```{r variant5, test = list(result_v5 = "result")}
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", ref_group = "A: Drug X") %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)")
Expand All @@ -285,7 +285,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 1L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
Expand Down Expand Up @@ -324,7 +324,7 @@ result
```{r variant6, test = list(result_v6 = "result")}
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", ref_group = "A: Drug X") %>%
summarize_vars(
analyze_vars(
vars = "is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)")
Expand All @@ -338,7 +338,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
indent_mod = 1L,
) %>%
analyze("EVNTDESC") %>%
summarize_vars(
analyze_vars(
vars = "is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
Expand Down
2 changes: 1 addition & 1 deletion book/tables/lab-results/lbt02.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ l <- basic_table(show_colcounts = TRUE) %>%
label_pos = "topleft",
split_label = obj_label(adlb$AVISIT)
) %>%
summarize_vars(vars = "AVAL")
analyze_vars(vars = "AVAL")

result <- build_table(l,
df = adlb,
Expand Down
6 changes: 3 additions & 3 deletions book/tables/other/disclosurest01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ lyt <- basic_table(show_colcounts = TRUE) %>%
split_fun = split_fun
) %>%
summarize_row_groups(label_fstr = "Discontinued Study") %>%
summarize_vars(
analyze_vars(
"STDDRS",
.stats = "count_fraction"
) %>%
Expand Down Expand Up @@ -166,7 +166,7 @@ var_labels <- c("Age (yr)", "Age group", "Sex", "Race", "Ethnicity")
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM") %>%
add_overall_col("All Patients") %>%
summarize_vars(
analyze_vars(
vars = vars,
var_labels = var_labels
)
Expand Down Expand Up @@ -203,7 +203,7 @@ var_labels(adsl) <- c(adsl_labels)
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM") %>%
add_overall_col(label = "All Patients") %>%
summarize_vars("COUNTRY") %>%
analyze_vars("COUNTRY") %>%
append_varlabels(adsl, "COUNTRY")

result <- build_table(lyt, adsl)
Expand Down
2 changes: 1 addition & 1 deletion book/tables/other/ratet01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ anl <- df_explicit_na(anl)
```{r variant1, test = list(result_v1 = "result")}
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", ref_group = "B: Placebo") %>%
summarize_vars(
analyze_vars(
"AVAL_f",
var_labels = "Number of exacerbations per patient",
.stats = c("count_fraction"),
Expand Down
4 changes: 2 additions & 2 deletions book/tables/pharmacokinetic/adat02.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -93,13 +93,13 @@ lyt_adab_ti <- basic_table(show_colcounts = TRUE) %>%
var_labels = "Treatment-induced ADA patients with",
show_labels = "visible"
) %>%
summarize_vars(
analyze_vars(
"Time to onset of ADA",
.stats = "median",
nested = FALSE,
.labels = c(median = "Median time to onset of ADA (weeks)")
) %>%
summarize_vars(
analyze_vars(
"Antibody titer units",
.stats = "range",
nested = FALSE,
Expand Down
2 changes: 1 addition & 1 deletion book/tables/pharmacokinetic/pkpt02.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ lyt <- basic_table() %>%
label_pos = "topleft",
split_label = "PK Parameter"
) %>%
tern::summarize_vars(
tern::analyze_vars(
vars = "AVAL",
.stats = c("n", "mean_sd", "cv", "geom_mean", "geom_cv", "median", "range"),
.formats = c(
Expand Down
2 changes: 1 addition & 1 deletion book/tables/pharmacokinetic/pkpt04.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ lyt <- basic_table() %>%
label_pos = "topleft",
split_label = "PK Parameter"
) %>%
tern::summarize_vars(
tern::analyze_vars(
vars = "AVAL",
.stats = c("n", "mean_sd", "cv", "geom_mean", "geom_cv", "median", "range"),
.formats = c(
Expand Down
2 changes: 1 addition & 1 deletion book/tables/pharmacokinetic/pkpt06.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ lyt <- basic_table() %>%
label_pos = "topleft",
split_label = "PK Parameter"
) %>%
tern::summarize_vars(
tern::analyze_vars(
vars = "AVAL",
.stats = c("n", "mean_sd", "cv", "geom_mean", "geom_cv", "median", "range"),
.formats = c(
Expand Down
2 changes: 1 addition & 1 deletion book/tables/pharmacokinetic/pkpt08.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ lyt <- basic_table() %>%
label_pos = "topleft",
split_label = "Treatment Arm"
) %>%
summarize_vars(
analyze_vars(
vars = "AVAL",
.stats = c(
"n", "mean", "sd", "cv",
Expand Down
12 changes: 6 additions & 6 deletions book/tables/safety/dmt01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ var_labels <- c(
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ACTARM") %>%
add_overall_col("All Patients") %>%
summarize_vars(
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
Expand All @@ -125,7 +125,7 @@ var_labels <- c(

result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ACTARM") %>%
summarize_vars(
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
Expand All @@ -141,14 +141,14 @@ split_fun <- drop_split_levels

result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ACTARM") %>%
summarize_vars(
analyze_vars(
vars = c("AGE", "SEX", "RACE"),
var_labels = c("Age", "Sex", "Race")
) %>%
split_rows_by("STRATA1",
split_fun = split_fun
) %>%
summarize_vars("BMRKR1") %>%
analyze_vars("BMRKR1") %>%
build_table(adsl)

result
Expand All @@ -159,7 +159,7 @@ result
```{r variant4, test = list(result_v4 = "result")}
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ACTARM") %>%
summarize_vars(
analyze_vars(
vars = c("AGE", "SEX", "RACE", "DBP", "SBP"),
var_labels = c(
"Age (yr)",
Expand All @@ -179,7 +179,7 @@ result
```{r variant5, test = list(result_v5 = "result")}
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ACTARM") %>%
summarize_vars(
analyze_vars(
vars = c("AGE", "SEX", "RACE", "BBMISI"),
var_labels = c(
"Age (yr)",
Expand Down
Loading