You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Evolutionary dynamics of multi-agent learning: A survey by Daan Bloembergen, Karl Tuyls, Daniel Hennes and Michael Kaisers. Journal of Artificial Intelligence Research 2015 The interaction of multiple autonomous agents gives rise to highly dynamic and nondeterministic environments, contributing to the complexity in applications such as automated financial markets, smart grids, or robotics. Due to the sheer number of situations that may arise, it is not possible to foresee and program the optimal behaviour for all agents beforehand. Consequently, it becomes essential for the success of the system that the agents can learn their optimal behaviour and adapt to new situations or circumstances. The past two decades have seen the emergence of reinforcement learning, both in single and multi-agent settings, as a strong, robust and adaptive learning paradigm. Progress has been substantial, and a wide range of algorithms are now available. An important challenge in the domain of multi-agent learning is to gain qualitative insights into the resulting system dynamics. In the past decade, tools and methods from evolutionary game theory have been successfully employed to study multi-agent learning dynamics formally in strategic interactions. This article surveys the dynamical models that have been derived for various multi-agent reinforcement learning algorithms, making it possible to study and compare them qualitatively. Furthermore, new learning algorithms that have been introduced using these evolutionary game theoretic tools are reviewed. The evolutionary models can be used to study complex strategic interactions. Examples of such analysis are given for the domains of automated trading in stock markets and collision avoidance in multi-robot systems. The paper provides a roadmap on the progress that has been achieved in analysing the evolutionary dynamics of multi-agent learning by highlighting the main results and accomplishments. A survey of learning in multiagent environments: Dealing with non-stationarity by Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag and Enrique Munoz de Cote. arXiv 2017 The key challenge in multiagent learning is learning a best response to the behaviour of other agents, which may be non-stationary: if the other agents adapt their strategy as well, the learning target moves. Disparate streams of research have approached non-stationarity from several angles, which make a variety of implicit assumptions that make it hard to keep an overview of the state of the art and to validate the innovation and significance of new works. This survey presents a coherent overview of work that addresses opponent-induced non-stationarity with tools from game theory, reinforcement learning and multi-armed bandits. Further, we reflect on the principle approaches how algorithms model and cope with this non-stationarity, arriving at a new framework and five categories (in increasing order of sophistication): ignore, forget, respond to target models, learn models, and theory of mind. A wide range of state-of-the-art algorithms is classified into a taxonomy, using these categories and key characteristics of the environment (e.g., observability) and adaptation behaviour of the opponents (e.g., smooth, abrupt). To clarify even further we present illustrative variations of one domain, contrasting the strengths and limitations of each category. Finally, we discuss in which environments the different approaches yield most merit, and point to promising avenues of future research. A Survey and Critique of Multiagent Deep Reinforcement Learning by Pablo Hernandez-Leal, Bilal Kartal and Matthew E. Taylor. arXiv 2018 Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has led to a dramatic increase in the number of applications and methods. Recent works have explored learning beyond single-agent scenarios and have considered multiagent learning (MAL) scenarios. Initial results report successes in complex multiagent domains, although there are several challenges to be addressed. The primary goal of this article is to provide a clear overview of current multiagent deep reinforcement learning (MDRL) literature. Additionally, we complement the overview with a broader analysis: (i) we revisit previous key components, originally presented in MAL and RL, and highlight how they have been adapted to multiagent deep reinforcement learning settings. (ii) We provide general guidelines to new practitioners in the area: describing lessons learned from MDRL works, pointing to recent benchmarks, and outlining open avenues of research. (iii) We take a more critical tone raising practical challenges of MDRL (e.g., implementation and computational demands). We expect this article will help unify and motivate future research to take advantage of the abundant literature that exists (e.g., RL and MAL) in a joint effort to promote fruitful research in the multiagent community. Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications by Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. arXiv 2019 Reinforcement learning (RL) algorithms have been around for decades and employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that require multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems. A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems by Felipe Leno Da Silva and Anna Helena Reali Costa. Journal of Artificial Intelligence Research 2019 Multiagent Reinforcement Learning (RL) solves complex tasks that require coordination with other agents through autonomous exploration of the environment. However, learning a complex task from scratch is impractical due to the huge sample complexity of RL algorithms. For this reason, reusing knowledge that can come from previous experience or other agents is indispensable to scale up multiagent RL algorithms. This survey provides a unifying view of the literature on knowledge reuse in multiagent RL. We define a taxonomy of solutions for the general knowledge reuse problem, providing a comprehensive discussion of recent progress on knowledge reuse in Multiagent Systems (MAS) and of techniques for knowledge reuse across agents (that may be actuating in a shared environment or not). We aim at encouraging the community to work towards reusing all the knowledge sources available in a MAS. For that, we provide an in-depth discussion of current lines of research and open questions. Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms by Kaiqing Zhang, Zhuoran Yang and Tamer Başar. arXiv 2019 Recent years have witnessed significant advances in reinforcement learning (RL), which has registered great success in solving various sequential decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively long history, and has recently re-emerged due to advances in single-agent RL techniques. Though empirically successful, theoretical foundations for MARL are relatively lacking in the literature. In this chapter, we provide a selective overview of MARL, with focus on algorithms backed by theoretical analysis. More specifically, we review the theoretical results of MARL algorithms mainly within two representative frameworks, Markov/stochastic games and extensive-form games, in accordance with the types of tasks they address, i.e., fully cooperative, fully competitive, and a mix of the two. We also introduce several significant but challenging applications of these algorithms. Orthogonal to the existing reviews on MARL, we highlight several new angles and taxonomies of MARL theory, including learning in extensive-form games, decentralized MARL with networked agents, MARL in the mean-field regime, (non-)convergence of policy-based methods for learning in games, etc. Some of the new angles extrapolate from our own research endeavors and interests. Our overall goal with this chapter is, beyond providing an assessment of the current state of the field on the mark, to identify fruitful future research directions on theoretical studies of MARL. We expect this chapter to serve as continuing stimulus for researchers interested in working on this exciting while challenging topic. A Review of Cooperative Multi-Agent Deep Reinforcement Learning by Afshin OroojlooyJadid and Davood Hajinezhad. arXiv 2019 Deep Reinforcement Learning has made significant progress in multi-agent systems in recent years. In this review article, we have focused on presenting recent approaches on Multi-Agent Reinforcement Learning (MARL) algorithms. In particular, we have focused on five common approaches on modeling and solving cooperative multi-agent reinforcement learning problems: (I) independent learners, (II) fully observable critic, (III) value function factorization, (IV) consensus, and (IV) learn to communicate. First, we elaborate on each of these methods, possible challenges, and how these challenges were mitigated in the relevant papers. If applicable, we further make a connection among different papers in each category. Next, we cover some new emerging research areas in MARL along with the relevant recent papers. Due to the recent success of MARL in real-world applications, we assign a section to provide a review of these applications and corresponding articles. Also, a list of available environments for MARL research is provided in this survey. Finally, the paper is concluded with proposals on the possible research directions. An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective by Yaodong Yang and Jun Wang. arXiv 2020 Following the remarkable success of the AlphaGO series, 2019 was a booming year that witnessed significant advances in multi-agent reinforcement learning (MARL) techniques. MARL corresponds to the learning problem in a multi-agent system in which multiple agents learn simultaneously. It is an interdisciplinary domain with a long history that includes game theory, machine learning, stochastic control, psychology, and optimisation. Although MARL has achieved considerable empirical success in solving real-world games, there is a lack of a self-contained overview in the literature that elaborates the game theoretical foundations of modern MARL methods and summarises the recent advances. In fact, the majority of existing surveys are outdated and do not fully cover the recent developments since 2010. In this work, we provide a monograph on MARL that covers both the fundamentals and the latest developments in the research frontier. The goal of our monograph is to provide a self-contained assessment of the current state-of-the-art MARL techniques from a game theoretical perspective. We expect this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing domain and existing domain experts who want to obtain a panoramic view and identify new directions based on recent advances. Multiagent Deep Reinforcement Learning: Challenges and Directions Towards Human-Like Approaches by Annie Wong, Thomas Bäck, Anna V. Kononova and Aske Plaat. arXiv 2021 This paper surveys the field of multiagent deep reinforcement learning. The combination of deep neural networks with reinforcement learning has gained increased traction in recent years and is slowly shifting the focus from single-agent to multiagent environments. Dealing with multiple agents is inherently more complex as (a) the future rewards depend on multiple players’ joint actions and (b) the computational complexity of functions increases. We present the most common multiagent problem representations and their main challenges, and identify five research areas that address one or more of these challenges: centralised training and decentralised execution, opponent modelling, communication, efficient coordination, and reward shaping. We find that many computational studies rely on unrealistic assumptions or are not generalisable to other settings; they struggle to overcome the curse of dimensionality or nonstationarity. Approaches from psychology and sociology capture promising relevant behaviours such as communication and coordination. We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach to open up new possibilities for more human-oriented solutions in multiagent reinforcement learning. Multi-Agent Reinforcement Learning: A Review of Challenges and Applications by Lorenzo Canese, Gian C. Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco Re, and Sergio Spanò. MDPI 2021 In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods. Distributed Reinforcement Learning for Robot Teams: A
Review by Yutong Wang, Mehul Damani, Pamela Wang, Yuhong Cao and Guillaume Sartoretti. Springer Nature 2021 Purpose of review: Recent advances in sensing, actuation, and computation have opened the door to multi-robot systems consisting of hundreds/thousands of robots, with promising applications to automated manufacturing, disaster relief, harvesting, last-mile delivery, port/airport operations, or search and rescue. The community has leveraged model-free multi-agent reinforcement learning (MARL) to devise efficient, scalable controllers for multi-robot systems (MRS). This review aims to provide an analysis of the state-of-the-art in distributed MARL for multi-robot cooperation. Recent findings: Decentralized MRS face fundamental challenges, such as non-stationarity and partial observability. Building upon the “centralized training, decentralized execution” paradigm, recent MARL approaches include independent learning, centralized critic, value decomposition, and communication learning approaches. Cooperative behaviors are demonstrated through AI benchmarks and fundamental real-world robotic capabilities such as multi-robot motion/path planning. Summary: This survey reports the challenges surrounding decentralized model-free MARL for multi-robot cooperation and existing classes of approaches. We present benchmarks and robotic applications along with a discussion on current open avenues for research Multi‑agent deep reinforcement learning: a survey by Sven Gronauer and Klaus Diepold. Artifcial Intelligence Review 2021 The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problems with real-world complexity. This article provides an overview of the current developments in the feld of multi-agent deep reinforcement learning. We focus primarily on literature from recent years that combines deep reinforcement learning methods with a multi-agent scenario. To survey the works that constitute the contemporary landscape, the main contents are divided into three parts. First, we analyze the structure of training schemes that are applied to train multiple agents. Second, we consider the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. Third, we systematically enumerate challenges that exclusively arise in the multi-agent domain and review methods that are leveraged to cope with these challenges. To conclude this survey, we discuss advances, identify trends, and outline possible directions for future work in this research area. A Survey of Multi-Agent Reinforcement Learning with Communication by Changxi Zhu, Mehdi Dastani and Shihan Wang. arXiv 2022 Communication is an effective mechanism for coordinating the behavior of multiple agents. In the field of multi-agent reinforcement learning, agents can improve the overall learning performance and achieve their objectives by communication. Moreover, agents can communicate various types of messages, either to all agents or to specific agent groups, and through specific channels. With the growing body of research work in MARL with communication (Comm-MARL), there is lack of a systematic and structural approach to distinguish and classify existing Comm-MARL systems. In this paper, we survey recent works in the Comm-MARL field and consider various aspects of communication that can play a role in the design and development of multi-agent reinforcement learning systems. With these aspects in mind, we propose several dimensions along which Comm-MARL systems can be analyzed, developed, and compared. A Survey of Ad Hoc Teamwork Research by Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan, Peter Stone, and Stefano V. Albrecht. arXiv 2022 Ad hoc teamwork is the research problem of designing agents that can collaborate with new teammates without prior coordination. This survey makes a two-fold contribution: First, it provides a structured description of the different facets of the ad hoc teamwork problem. Second, it discusses the progress that has been made in the field so far, and identifies the immediate and long-term open problems that need to be addressed in ad hoc teamwork.