Skip to content

Commit

Permalink
Update readme (#5167)
Browse files Browse the repository at this point in the history
  • Loading branch information
jason-dai authored Mar 25, 2024
1 parent bb053c0 commit b62faa3
Showing 1 changed file with 21 additions and 21 deletions.
42 changes: 21 additions & 21 deletions docs/readthedocs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ BigDL-LLM
.. raw:: html

<p>
<a href="https://github.com/intel-analytics/BigDL/"><code><span>bigdl-llm</span></code></a> is a library for running <strong>LLM</strong> (large language model) on Intel <strong>XPU</strong> (from <em>Laptop</em> to <em>GPU</em> to <em>Cloud</em>) using <strong>INT4/FP4/INT8/FP8</strong> with very low latency <sup><a href="#footnote-perf" id="ref-perf">[1]</a></sup> (for any <strong>PyTorch</strong> model).
<a href="https://github.com/intel-analytics/BigDL-2.x/"><code><span>bigdl-llm</span></code></a> is a library for running <strong>LLM</strong> (large language model) on Intel <strong>XPU</strong> (from <em>Laptop</em> to <em>GPU</em> to <em>Cloud</em>) using <strong>INT4/FP4/INT8/FP8</strong> with very low latency <sup><a href="#footnote-perf" id="ref-perf">[1]</a></sup> (for any <strong>PyTorch</strong> model).
</p>

.. note::
Expand All @@ -34,23 +34,23 @@ Latest update 🔥
============================================
- [2024/03] 🔔🔔🔔 ``bigdl-llm`` **has now become** `ipex-llm <https://github.com/intel-analytics/ipex-llm>`_; see the migration guide `here <https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html>`_.
- [2024/03] **LangChain** added support for ``bigdl-llm``; see the details `here <https://python.langchain.com/docs/integrations/llms/bigdl>`_.
- [2024/02] ``bigdl-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
- [2024/02] ``bigdl-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
- [2024/02] ``bigdl-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
- [2024/02] ``bigdl-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
- [2024/02] Users can now use ``bigdl-llm`` through `Text-Generation-WebUI <https://github.com/intel-analytics/text-generation-webui>`_ GUI.
- [2024/02] ``bigdl-llm`` now supports `Self-Speculative Decoding <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively.
- [2024/02] ``bigdl-llm`` now supports a comprehensive list of LLM finetuning on Intel GPU (including `LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/LoRA>`_, `QLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, `DPO <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>`_, `QA-LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ and `ReLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_).
- [2024/01] Using ``bigdl-llm`` `QLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, we managed to finetune LLaMA2-7B in **21 minutes** and LLaMA2-70B in **3.14 hours** on 8 Intel Max 1550 GPU for `Standford-Alpaca <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA/alpaca-qlora>`_ (see the blog `here <https://www.intel.com/content/www/us/en/developer/articles/technical/finetuning-llms-on-intel-gpus-using-bigdl-llm.html>`_).
- [2023/12] ``bigdl-llm`` now supports `ReLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_ (see `"ReLoRA: High-Rank Training Through Low-Rank Updates" <https://arxiv.org/abs/2307.05695>`_).
- [2023/12] ``bigdl-llm`` now supports `Mixtral-8x7B <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral>`_.
- [2023/12] ``bigdl-llm`` now supports `QA-LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ (see `"QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models" <https://arxiv.org/abs/2309.14717>`_).
- [2023/12] ``bigdl-llm`` now supports `FP8 and FP4 inference <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types>`_ on Intel **GPU**.
- [2023/11] Initial support for directly loading `GGUF <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF>`_, `AWQ <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ>`_ and `GPTQ <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ>`_ models in to ``bigdl-llm`` is available.
- [2023/11] ``bigdl-llm`` now supports `vLLM continuous batching <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/vLLM-Serving>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/vLLM-Serving>`_.
- [2023/10] ``bigdl-llm`` now supports `QLoRA finetuning <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/QLoRA-FineTuning>`_.
- [2023/10] ``bigdl-llm`` now supports `FastChat serving <https://github.com/intel-analytics/BigDL/tree/main/python/llm/src/bigdl/llm/serving>`_ on on both Intel CPU and GPU.
- [2023/09] ``bigdl-llm`` now supports `Intel GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU>`_ (including Arc, Flex and MAX)
- [2024/02] ``bigdl-llm`` now supports `Self-Speculative Decoding <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively.
- [2024/02] ``bigdl-llm`` now supports a comprehensive list of LLM finetuning on Intel GPU (including `LoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/LoRA>`_, `QLoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, `DPO <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>`_, `QA-LoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ and `ReLoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_).
- [2024/01] Using ``bigdl-llm`` `QLoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, we managed to finetune LLaMA2-7B in **21 minutes** and LLaMA2-70B in **3.14 hours** on 8 Intel Max 1550 GPU for `Standford-Alpaca <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA/alpaca-qlora>`_ (see the blog `here <https://www.intel.com/content/www/us/en/developer/articles/technical/finetuning-llms-on-intel-gpus-using-bigdl-llm.html>`_).
- [2023/12] ``bigdl-llm`` now supports `ReLoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_ (see `"ReLoRA: High-Rank Training Through Low-Rank Updates" <https://arxiv.org/abs/2307.05695>`_).
- [2023/12] ``bigdl-llm`` now supports `Mixtral-8x7B <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral>`_ and `CPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral>`_.
- [2023/12] ``bigdl-llm`` now supports `QA-LoRA <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ (see `"QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models" <https://arxiv.org/abs/2309.14717>`_).
- [2023/12] ``bigdl-llm`` now supports `FP8 and FP4 inference <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types>`_ on Intel **GPU**.
- [2023/11] Initial support for directly loading `GGUF <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF>`_, `AWQ <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ>`_ and `GPTQ <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ>`_ models in to ``bigdl-llm`` is available.
- [2023/11] ``bigdl-llm`` now supports `vLLM continuous batching <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/vLLM-Serving>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/CPU/vLLM-Serving>`_.
- [2023/10] ``bigdl-llm`` now supports `QLoRA finetuning <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_ and `CPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/CPU/QLoRA-FineTuning>`_.
- [2023/10] ``bigdl-llm`` now supports `FastChat serving <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/src/bigdl/llm/serving>`_ on on both Intel CPU and GPU.
- [2023/09] ``bigdl-llm`` now supports `Intel GPU <https://github.com/intel-analytics/BigDL-2.x/tree/main/python/llm/example/GPU>`_ (including Arc, Flex and MAX)
- [2023/09] ``bigdl-llm`` `tutorial <https://github.com/intel-analytics/bigdl-llm-tutorial>`_ is released.
- Over 30 models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM2/ChatGLM3, Mistral, Falcon, MPT, LLaVA, WizardCoder, Dolly, Whisper, Baichuan/Baichuan2, InternLM, Skywork, QWen/Qwen-VL, Aquila, MOSS* and more; see the complete list `here <https://github.com/intel-analytics/bigdl#verified-models>`_.
- Over 30 models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM2/ChatGLM3, Mistral, Falcon, MPT, LLaVA, WizardCoder, Dolly, Whisper, Baichuan/Baichuan2, InternLM, Skywork, QWen/Qwen-VL, Aquila, MOSS* and more; see the complete list `here <https://github.com/intel-analytics/BigDL-2.x#verified-models>`_.

============================================
``bigdl-llm`` demos
Expand Down Expand Up @@ -93,7 +93,7 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo

- `Windows GPU installation <doc/LLM/Quickstart/install_windows_gpu.html>`_
- `Run BigDL-LLM in Text-Generation-WebUI <doc/LLM/Quickstart/webui_quickstart.html>`_
- `Run BigDL-LLM using Docker <https://github.com/intel-analytics/BigDL/tree/main/docker/llm>`_
- `Run BigDL-LLM using Docker <https://github.com/intel-analytics/BigDL-2.x/tree/main/docker/llm>`_
- `CPU quickstart <#cpu-quickstart>`_
- `GPU quickstart <#gpu-quickstart>`_

Expand Down Expand Up @@ -166,16 +166,16 @@ You can then apply INT4 optimizations to any Hugging Face *Transformers* models
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids.cpu())
**For more details, please refer to the bigdl-llm** `Document <doc/LLM/index.html>`_, `Readme <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_, `Tutorial <https://github.com/intel-analytics/bigdl-llm-tutorial>`_ and `API Doc <doc/PythonAPI/LLM/index.html>`_.
**For more details, please refer to the bigdl-llm** `Document <doc/LLM/index.html>`_ and `API Doc <doc/PythonAPI/LLM/index.html>`_.

------

************************************************
Overview of the complete BigDL project
************************************************
`BigDL <https://github.com/intel-analytics/bigdl>`_ seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
`BigDL <https://github.com/intel-analytics/BigDL-2.x>`_ seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:

- `LLM <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
- `LLM <doc/LLM/index.html>`_: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
- `Orca <doc/Orca/index.html>`_: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
- `Nano <doc/Nano/index.html>`_: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
- `DLlib <doc/DLlib/index.html>`_: "Equivalent of Spark MLlib" for Deep Learning
Expand All @@ -201,7 +201,7 @@ Choosing the right BigDL library
Feature3 [label="What type of application?"]
Feature4 [label="Domain?"]

LLM[href="https://github.com/intel-analytics/BigDL/blob/main/python/llm" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-LLM document"]
LLM[href="../doc/LLM/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-LLM document"]
Orca[href="../doc/Orca/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Orca document"]
Nano[href="../doc/Nano/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Nano document"]
DLlib1[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
Expand Down

0 comments on commit b62faa3

Please sign in to comment.