forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gen_api_answer.py
149 lines (129 loc) · 4.55 KB
/
gen_api_answer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Generate answers with GPT-4
Usage:
python3 gen_api_answer.py --model gpt-3.5-turbo
"""
import argparse
import json
import os
import time
import concurrent.futures
import openai
import shortuuid
import tqdm
from fastchat.llm_judge.common import (
load_questions,
temperature_config,
chat_completion_openai,
chat_completion_anthropic,
chat_completion_palm,
)
from fastchat.llm_judge.gen_model_answer import reorg_answer_file
from fastchat.model.model_adapter import get_conversation_template, ANTHROPIC_MODEL_LIST
def get_answer(
question: dict, model: str, num_choices: int, max_tokens: int, answer_file: str
):
assert (
args.force_temperature is not None and "required_temperature" in question.keys()
) == False
if args.force_temperature is not None:
temperature = args.force_temperature
elif "required_temperature" in question.keys():
temperature = question["required_temperature"]
elif question["category"] in temperature_config:
temperature = temperature_config[question["category"]]
else:
temperature = 0.7
choices = []
chat_state = None # for palm-2 model
for i in range(num_choices):
conv = get_conversation_template(model)
turns = []
for j in range(len(question["turns"])):
conv.append_message(conv.roles[0], question["turns"][j])
conv.append_message(conv.roles[1], None)
if model in ANTHROPIC_MODEL_LIST:
output = chat_completion_anthropic(model, conv, temperature, max_tokens)
elif model == "palm-2-chat-bison-001":
chat_state, output = chat_completion_palm(
chat_state, model, conv, temperature, max_tokens
)
else:
output = chat_completion_openai(model, conv, temperature, max_tokens)
conv.update_last_message(output)
turns.append(output)
choices.append({"index": i, "turns": turns})
# Dump answers
ans = {
"question_id": question["question_id"],
"answer_id": shortuuid.uuid(),
"model_id": model,
"choices": choices,
"tstamp": time.time(),
}
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
with open(answer_file, "a") as fout:
fout.write(json.dumps(ans) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--bench-name",
type=str,
default="mt_bench",
help="The name of the benchmark question set.",
)
parser.add_argument("--answer-file", type=str, help="The output answer file.")
parser.add_argument("--model", type=str, default="gpt-3.5-turbo")
parser.add_argument(
"--num-choices",
type=int,
default=1,
help="How many completion choices to generate.",
)
parser.add_argument(
"--force-temperature", type=float, help="Forcibly set a sampling temperature."
)
parser.add_argument(
"--max-tokens",
type=int,
default=1024,
help="The maximum number of new generated tokens.",
)
parser.add_argument(
"--question-begin",
type=int,
help="A debug option. The begin index of questions.",
)
parser.add_argument(
"--question-end", type=int, help="A debug option. The end index of questions."
)
parser.add_argument(
"--parallel", type=int, default=1, help="The number of concurrent API calls."
)
parser.add_argument("--openai-api-base", type=str, default=None)
args = parser.parse_args()
if args.openai_api_base is not None:
openai.api_base = args.openai_api_base
question_file = f"data/{args.bench_name}/question.jsonl"
questions = load_questions(question_file, args.question_begin, args.question_end)
if args.answer_file:
answer_file = args.answer_file
else:
answer_file = f"data/{args.bench_name}/model_answer/{args.model}.jsonl"
print(f"Output to {answer_file}")
with concurrent.futures.ThreadPoolExecutor(max_workers=args.parallel) as executor:
futures = []
for question in questions:
future = executor.submit(
get_answer,
question,
args.model,
args.num_choices,
args.max_tokens,
answer_file,
)
futures.append(future)
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures)
):
future.result()
reorg_answer_file(answer_file)