diff --git a/README.md b/README.md index 4781fdb4d5c..3d059d6bb96 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ --- -# 💫 Intel® LLM library for PyTorch* +# 💫 Intel® LLM Library for PyTorch* **`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1]. > [!NOTE] > - *It is built on top of the excellent work of **`llama.cpp`**, **`transformers`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.* @@ -184,7 +184,7 @@ Please see the **Perplexity** result below (tested on Wikitext dataset using the - [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.md): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU - [Ollama](docs/mddocs/Quickstart/ollama_quickstart.md): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU - [Llama 3 with `llama.cpp` and `ollama`](docs/mddocs/Quickstart/llama3_llamacpp_ollama_quickstart.md): running **Llama 3** on Intel GPU using `llama.cpp` and `ollama` with `ipex-llm` -- [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md): running `ipex-llm` in **vLLM** on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving) +- [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md): running `ipex-llm` in **vLLM** on both Intel [GPU](docs/mddocs/DockerGuides/vllm_docker_quickstart.md) and [CPU](docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md) - [FastChat](docs/mddocs/Quickstart/fastchat_quickstart.md): running `ipex-llm` in **FastChat** serving on on both Intel GPU and CPU - [Serving on multiple Intel GPUs](docs/mddocs/Quickstart/deepspeed_autotp_fastapi_quickstart.md): running `ipex-llm` **serving on multiple Intel GPUs** by leveraging DeepSpeed AutoTP and FastAPI - [Text-Generation-WebUI](docs/mddocs/Quickstart/webui_quickstart.md): running `ipex-llm` in `oobabooga` **WebUI**