diff --git a/README.md b/README.md index 6a70f2d0c59..61eef9117e0 100644 --- a/README.md +++ b/README.md @@ -177,6 +177,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | DeepSeek-MoE | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) | | | Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | | | Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-2) | +| Phi-3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3) | | Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) | | Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) | | DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) | diff --git a/docs/readthedocs/source/index.rst b/docs/readthedocs/source/index.rst index 383dbf918f4..5a307f3f8b1 100644 --- a/docs/readthedocs/source/index.rst +++ b/docs/readthedocs/source/index.rst @@ -538,6 +538,13 @@ Verified Models link + + Phi-3 + + link + + link + Yuan2 diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md new file mode 100644 index 00000000000..8794d02ce74 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md @@ -0,0 +1,71 @@ +# phi-3 + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on phi-3 models. For illustration purposes, we utilize the [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) as a reference phi-3 model. + +> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git). +> +> IPEX-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed. + +## Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phi-3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for IPEX-LLM: +```bash +conda create -n llm python=3.11 # recommend to use Python 3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option + +pip install transformers==4.37.0 +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the phi-3 model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the phi-3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-mini-4k-instruct'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `What is AI?`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.4 Sample Output +#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) +```log +-------------------- Prompt -------------------- +<|user|> +What is AI?<|end|> +<|assistant|> +-------------------- Output -------------------- +<|user|> What is AI?<|end|><|assistant|> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. The goal +``` \ No newline at end of file diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/generate.py new file mode 100644 index 00000000000..4dfec157b88 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/generate.py @@ -0,0 +1,68 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/microsoft/Phi-3-mini-4k-instruct#chat-format +PHI3_PROMPT_FORMAT = "<|user|>\n{prompt}<|end|>\n<|assistant|>" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-mini-4k-instruct", + help='The huggingface repo id for the phi-3 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PHI3_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + + output = model.generate(input_ids, + do_sample=False, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=False) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md b/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md new file mode 100644 index 00000000000..f9bb937f581 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md @@ -0,0 +1,67 @@ +# phi-3 + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on phi-3 models. For illustration purposes, we utilize the [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) as a reference phi-3 model. + +> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git). +> +> IPEX-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed. + +## Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phi-3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for IPEX-LLM: +```bash +conda create -n llm python=3.11 # recommend to use Python 3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option + +pip install transformers==4.37.0 +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the phi-3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-mini-4k-instruct'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `What is AI?`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.4 Sample Output +#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) +```log +-------------------- Prompt -------------------- +<|user|> +What is AI?<|end|> +<|assistant|> +-------------------- Output -------------------- +<|user|> What is AI?<|end|><|assistant|> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. The goal +``` diff --git a/python/llm/example/CPU/PyTorch-Models/Model/phi-3/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/phi-3/generate.py new file mode 100644 index 00000000000..f957d8a6a5e --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/phi-3/generate.py @@ -0,0 +1,70 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import AutoTokenizer, AutoModelForCausalLM +from ipex_llm import optimize_model + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/microsoft/Phi-3-mini-4k-instruct#chat-format +PHI3_PROMPT_FORMAT = "<|user|>\n{prompt}<|end|>\n<|assistant|>" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-mini-4k-instruct", + help='The huggingface repo id for the phi-3 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True, + torch_dtype='auto', + low_cpu_mem_usage=True, + use_cache=True) + + # With only one line to enable IPEX-LLM optimization on model + model = optimize_model(model) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PHI3_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + + output = model.generate(input_ids, + do_sample=False, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=False) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3/README.md new file mode 100644 index 00000000000..a05ab6d2c37 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3/README.md @@ -0,0 +1,131 @@ +# phi-3 +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on phi-3 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) as a reference phi-3 model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phi-3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.37.0 +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm +# below command will use pip to install the Intel oneAPI Base Toolkit 2024.0 +pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0 + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.37.0 +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --prompt 'What is AI?' +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the phi-3 model (e.g. `microsoft/Phi-3-mini-4k-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-mini-4k-instruct'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|user|> +What is AI?<|end|> +<|assistant|> +-------------------- Output -------------------- +<|user|> What is AI?<|end|><|assistant|> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. The goal +``` diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3/generate.py new file mode 100644 index 00000000000..1efba61b943 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-3/generate.py @@ -0,0 +1,78 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/microsoft/Phi-3-mini-4k-instruct#chat-format +PHI3_PROMPT_FORMAT = "<|user|>\n{prompt}<|end|>\n<|assistant|>" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-mini-4k-instruct", + help='The huggingface repo id for the phi-3 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True, + optimize_model=True, + use_cache=True) + + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PHI3_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + + # ipex_llm model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + # start inference + st = time.time() + + output = model.generate(input_ids, + do_sample=False, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=False) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/phi-3/README.md b/python/llm/example/GPU/PyTorch-Models/Model/phi-3/README.md new file mode 100644 index 00000000000..ed8051b66ea --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/phi-3/README.md @@ -0,0 +1,131 @@ +# phi-3 +In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate phi-3 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) as a reference phi-3 model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phi-3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.37.0 +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm +# below command will use pip to install the Intel oneAPI Base Toolkit 2024.0 +pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0 + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.37.0 +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --prompt 'What is AI?' +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the phi-3 model (e.g. `microsoft/Phi-3-mini-4k-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-mini-4k-instruct'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|user|> +What is AI?<|end|> +<|assistant|> +-------------------- Output -------------------- +<|user|> What is AI?<|end|><|assistant|> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. The goal +``` diff --git a/python/llm/example/GPU/PyTorch-Models/Model/phi-3/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/phi-3/generate.py new file mode 100644 index 00000000000..2619955a495 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/phi-3/generate.py @@ -0,0 +1,79 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import AutoModelForCausalLM, AutoTokenizer +from ipex_llm import optimize_model + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/microsoft/Phi-3-mini-4k-instruct#chat-format +PHI3_PROMPT_FORMAT = "<|user|>\n{prompt}<|end|>\n<|assistant|>" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-mini-4k-instruct", + help='The huggingface repo id for the phi-3 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True, + torch_dtype='auto', + low_cpu_mem_usage=True, + use_cache=True) + + # With only one line to enable IPEX-LLM optimization on model + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = optimize_model(model) + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PHI3_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + + # ipex_llm model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + # start inference + st = time.time() + + output = model.generate(input_ids, + do_sample=False, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=False) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str)