Skip to content

Commit

Permalink
modify
Browse files Browse the repository at this point in the history
  • Loading branch information
ivy-lv11 committed May 31, 2024
1 parent 0a360f1 commit 22245fd
Show file tree
Hide file tree
Showing 6 changed files with 78 additions and 27 deletions.
30 changes: 16 additions & 14 deletions python/llm/example/CPU/StableDiffusion/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,23 +2,13 @@
In this directory, you will find examples on how to run StableDiffusion models on CPU.

### 1. Installation
#### 1.1 Installation on Linux
We suggest using conda to manage environment.
```bash
conda create -n diffusion python=3.11
conda activate diffusion
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
pip install setuptools==69.5.1
```
#### 1.1. Install IPEX-LLM
Follow the instructions in [IPEX-LLM CPU installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_cpu.html) to install ipex-llm. We recommend to use miniconda to manage your python environment.

#### 1.2 Installation on Windows
We suggest using conda to manage environment.
#### 1.2 Install dependencies for Stable Diffusion
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
```bash
conda create -n diffusion python=3.11 libuv
conda activate diffusion
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
pip install setuptools==69.5.1
Expand All @@ -38,3 +28,15 @@ Arguments info:
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-cpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.

#### 4.2 LCM-LoRA Example
The example shows how to performing inference with LCM-LoRA on Intel CPU.
```bash
python ./lora-lcm.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-cpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.
55 changes: 55 additions & 0 deletions python/llm/example/CPU/StableDiffusion/lora-lcm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora

import torch
from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm
import argparse


def main(args):
pipe = DiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
).to("cpu")

# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

# load LCM-LoRA
pipe.load_lora_weights(args.lora_weights_path)

generator = torch.manual_seed(42)
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
image.save(args.save_path)

if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
help='The huggingface repo id for the lcm lora sdxl checkpoint')
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-cpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=4,
help="Number of inference steps")
args = parser.parse_args()
main(args)
1 change: 1 addition & 0 deletions python/llm/example/CPU/StableDiffusion/sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl

from diffusers import AutoPipelineForText2Image
import torch
Expand Down
17 changes: 4 additions & 13 deletions python/llm/example/GPU/StableDiffusion/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,22 +2,13 @@
In this directory, you will find examples on how to run StableDiffusion models on [Intel GPUs](../README.md).

### 1. Installation
#### 1.1 Installation on Linux
We suggest using conda to manage environment.
```bash
conda create -n diffusion python=3.11
conda activate diffusion
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
```
#### 1.1 Install IPEX-LLM
Follow the instructions in IPEX-GPU installation guides ([Linux Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), [Windows Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html)) according to your system to install IPEX-LLM. After the installation, you should have created a conda environment, named diffusion for instance.

#### 1.2 Installation on Windows
We suggest using conda to manage environment.
#### 1.2 Install dependencies for Stable Diffusion
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
```bash
conda create -n diffusion python=3.11 libuv
conda activate diffusion
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
```
Expand Down
1 change: 1 addition & 0 deletions python/llm/example/GPU/StableDiffusion/lora-lcm.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora

import torch
from diffusers import DiffusionPipeline, LCMScheduler
Expand Down
1 change: 1 addition & 0 deletions python/llm/example/GPU/StableDiffusion/sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl

from diffusers import AutoPipelineForText2Image
import torch
Expand Down

0 comments on commit 22245fd

Please sign in to comment.