Skip to content

Commit

Permalink
ChatGLM3-6B LoRA Fine-tuning Demo
Browse files Browse the repository at this point in the history
  • Loading branch information
Uxito-Ada committed Jun 27, 2024
1 parent 13f59ae commit 38b3bf6
Show file tree
Hide file tree
Showing 5 changed files with 869 additions and 0 deletions.
141 changes: 141 additions & 0 deletions python/llm/example/GPU/LLM-Finetuning/LoRA/chatglm_finetune/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# LoRA Fine-Tuning on ChatGLM3-6B with IPEX-LLM

This example ports [ChatGLM3-6B lora_finetune](https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/lora_finetune.ipynb) demo to IPEX-LLM on [Intel Arc GPU](../../README.md).

### 1. Install

```bash
conda create -n llm python=3.11
conda activate llm
pip install "jieba>=0.42.1"
pip install "ruamel_yaml>=0.18.6"
pip install "rouge_chinese>=1.0.3"
pip install "jupyter>=1.0.0"
pip install "datasets>=2.18.0"
pip install "peft>=0.10.0"
pip install "typer"
pip install "sentencepiece"
pip install "nltk"
pip install "numpy<2.0.0"
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```

### 2. Configures OneAPI Environment Variables
```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. LoRA Fine-Tune on ChatGLM3-6B

First, download the dataset: we use `AdvertiseGen` to finetune ChatGLM3-6B in the following, and please now get it from [Google Drive](https://drive.google.com/file/d/13_vf0xRTQsyneRKdD1bZIr93vBGOczrk/view?usp=sharing) or [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/b3f119a008264b1cabd1/?dl=1), and unzip it in the current directory. Then, process the dataset with the below script:

```bash
python process_advertise_gen_dataset.py
```

Then, './AdvertiseGen' will be converted to './AdvertiseGen_fix'. Now, we have prepared the dataset, and are going to start LoRA fine-tuning on ChatGLM3-6B.

#### 3.1. Fine-Tune with a Single Arc Card

Start the fine-tuning by:


```bash
bash lora_finetuning_on_chatglm3_6b_with_1_arc_card.sh
```

Then, you will get output are as below:

```bash
2024-06-27 13:47:02,680 - root - INFO - intel_extension_for_pytorch auto imported
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.47it/s]
2024-06-27 13:47:03,794 - ipex_llm.transformers.utils - INFO - Converting the current model to bf16 format......
[2024-06-27 13:47:04,105] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to xpu (auto detect)
trainable params: 487,424 || all params: 6,244,071,424 || trainable%: 0.0078
PeftModelForCausalLM(
(base_model): LoraModel(
(model): ChatGLMForConditionalGeneration(
(transformer): ChatGLMModel(
(embedding): Embedding(
(word_embeddings): Embedding(65024, 4096)
)
(rotary_pos_emb): RotaryEmbedding()
(encoder): GLMTransformer(
(layers): ModuleList(
(0-27): 28 x GLMBlock(
(input_layernorm): RMSNorm()
(self_attention): SelfAttention(
(query_key_value): LoraLowBitLinear(
(base_layer): BF16Linear(in_features=4096, out_features=4608, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=2, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=2, out_features=4608, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(qa_pool): Identity()
)
(core_attention): CoreAttention(
(attention_dropout): Dropout(p=0.0, inplace=False)
)
(dense): BF16Linear(in_features=4096, out_features=4096, bias=False)
)
(post_attention_layernorm): RMSNorm()
(mlp): MLP(
(dense_h_to_4h): BF16Linear(in_features=4096, out_features=27392, bias=False)
(dense_4h_to_h): BF16Linear(in_features=13696, out_features=4096, bias=False)
)
)
)
(final_layernorm): RMSNorm()
)
(output_layer): BF16Linear(in_features=4096, out_features=65024, bias=False)
)
)
)
)
--> Model

--> model has 0.487424M params

train_dataset: Dataset({
features: ['input_ids', 'labels'],
num_rows: 114599
})
val_dataset: Dataset({
features: ['input_ids', 'output_ids'],
num_rows: 1070
})
test_dataset: Dataset({
features: ['input_ids', 'output_ids'],
num_rows: 1070
})
--> Sanity check
'[gMASK]': 64790 -> -100
'sop': 64792 -> -100
'<|user|>': 64795 -> -100
'': 30910 -> -100
'\n': 13 -> -100
......

# Here it takes time to finish the whole fine-tuning

......

Training completed. Do not forget to share your model on huggingface.co/models =)


{'train_runtime': xxxx.xxxx, 'train_samples_per_second': x.xxx, 'train_steps_per_second': x.xxx, 'train_loss': xx.xx, 'epoch': x.xx}
100%|████████████████████████████████████████████████████████████████████████████████████████████| 3000/3000 [xx:xx<00:00, x.xxit/s]
***** Running Prediction *****
Num examples = 1070
Batch size = 4
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 268/268 [xx:xx<00:00, x.xxs/it]
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# This is ported from https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/configs/lora.yaml
data_config:
train_file: train.json
val_file: dev.json
test_file: dev.json
num_proc: 16
max_input_length: 128
max_output_length: 128
training_args:
# see `transformers.Seq2SeqTrainingArguments`
output_dir: ./output
max_steps: 3000
# needed to be fit for the dataset
learning_rate: 5e-5
# settings for data loading
per_device_train_batch_size: 1
dataloader_num_workers: 16
remove_unused_columns: false
# settings for saving checkpoints
save_strategy: steps
save_steps: 500
# settings for logging
log_level: info
logging_strategy: steps
logging_steps: 10
# settings for evaluation
per_device_eval_batch_size: 4
evaluation_strategy: steps
eval_steps: 1000
# settings for optimizer
# adam_epsilon: 1e-6
# uncomment the following line to detect nan or inf values
# debug: underflow_overflow
predict_with_generate: true
# see `transformers.GenerationConfig`
generation_config:
max_new_tokens: 128
# set your absolute deepspeed path here
#deepspeed: ds_zero_2.json
# set to true if train with cpu.
use_cpu: false
peft_config:
peft_type: LORA
task_type: CAUSAL_LM
r: 2
lora_alpha: 8
lora_dropout: 0.1
Loading

0 comments on commit 38b3bf6

Please sign in to comment.