diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md b/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md index a2efa1df992..1d099da3677 100644 --- a/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md +++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md @@ -12,6 +12,7 @@ To run this example with IPEX-LLM on Intel GPUs, we have some recommended requir - [Qwen/Qwen1.5-7B-Chat](./run_qwen1.5_arc_2_card.sh) - [Qwen/Qwen1.5-14B-Chat](./run_qwen1.5_arc_2_card.sh) - [Qwen/Qwen1.5-32B-Chat](./run_qwen1.5_arc_2_card.sh) +- [THUDM/chatglm3-6b](./run_chatglm_arc_2_card.sh) - [baichuan-inc/Baichuan2-7B-Chat](./run_baichuan2_arc_2_card.sh) - [baichuan-inc/Baichuan2-13B-Chat](./run_baichuan2_arc_2_card.sh) - [microsoft/Phi-3-mini-4k-instruct](./run_phi3_arc_2_card.sh) @@ -71,6 +72,21 @@ bash run_qwen1.5_arc_2_card.sh +
+ Show chatglm example + +#### Run chatglm3-6B on two Intel Arc A770 + +You could specify `--repo-id-or-model-path` in the test script to be the huggingface repo id for chatglm to be downloaded, or the path to the huggingface checkpoint folder. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine. + +```bash +bash run_chatglm_arc_2_card.sh +``` + +
+ + +
Show Baichuan2 example diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py b/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py index 1be06e7072d..90d662ac029 100644 --- a/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py +++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py @@ -19,7 +19,7 @@ import time import argparse -from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel +from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel from transformers import AutoTokenizer init_pipeline_parallel() @@ -41,13 +41,21 @@ # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format - model = AutoModelForCausalLM.from_pretrained(model_path, - load_in_4bit=True, - optimize_model=True, - trust_remote_code=True, - use_cache=True, - torch_dtype=torch.float16, - pipeline_parallel_stages=args.gpu_num) + try: + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True, + torch_dtype=torch.float16, + pipeline_parallel_stages=args.gpu_num) + except: + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True, + pipeline_parallel_stages=args.gpu_num) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/run_chatglm_arc_2_card.sh b/python/llm/example/GPU/Pipeline-Parallel-Inference/run_chatglm_arc_2_card.sh new file mode 100644 index 00000000000..ab275117364 --- /dev/null +++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/run_chatglm_arc_2_card.sh @@ -0,0 +1,31 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +source /opt/intel/oneapi/setvars.sh +export MASTER_ADDR=127.0.0.1 +export MASTER_PORT=9090 +export FI_PROVIDER=tcp +export USE_XETLA=OFF +export OMP_NUM_THREADS=6 +if [[ $KERNEL_VERSION != *"6.5"* ]]; then + export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +fi +export TORCH_LLM_ALLREDUCE=0 + +NUM_GPUS=2 # number of used GPU +# To run chatglm3-6b +CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \ + generate.py --repo-id-or-model-path 'THUDM/chatglm3-6b' --gpu-num $NUM_GPUS diff --git a/python/llm/src/ipex_llm/transformers/models/chatglm2.py b/python/llm/src/ipex_llm/transformers/models/chatglm2.py index 7eebf1d0dbf..2bff252150d 100644 --- a/python/llm/src/ipex_llm/transformers/models/chatglm2.py +++ b/python/llm/src/ipex_llm/transformers/models/chatglm2.py @@ -74,10 +74,12 @@ def chatglm2_model_forward( use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict - batch_size, seq_length = input_ids.shape - if inputs_embeds is None: + batch_size, seq_length = input_ids.shape inputs_embeds = self.embedding(input_ids) + else: + inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() + seq_length, batch_size, _ = inputs_embeds.shape if full_attention_mask is None: if (attention_mask is not None and not attention_mask.all()) or ( diff --git a/python/llm/src/ipex_llm/transformers/pipeline_parallel.py b/python/llm/src/ipex_llm/transformers/pipeline_parallel.py index 92cb7d726a3..b13e39bc36a 100644 --- a/python/llm/src/ipex_llm/transformers/pipeline_parallel.py +++ b/python/llm/src/ipex_llm/transformers/pipeline_parallel.py @@ -71,6 +71,19 @@ def forward(self, hidden_states, past_key_value=None, use_cache=False, **kwargs) return outputs +class Dummy_GLMBlock(nn.Module): + def __init__(self, *args): + super().__init__() + # to avoid AttributeError + self.input_layernorm = DummyLayer() + self.mlp = Dummy_MLPLayer() + + def forward( + self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, + ): + return hidden_states, kv_cache + + def init_pipeline_parallel(): import oneccl_bindings_for_pytorch os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1") @@ -79,28 +92,49 @@ def init_pipeline_parallel(): def pipeline_parallel(model, pipeline_parallel_stages): - slice_size = (model.config.num_hidden_layers + pipeline_parallel_stages - 1) // \ - pipeline_parallel_stages + global num_layers + if hasattr(model.config, 'num_hidden_layers'): + num_layers = model.config.num_hidden_layers + elif hasattr(model.config, 'num_layers'): + # for chatglm3-6b + num_layers = model.config.num_layers + + slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages local_rank = dist.get_rank() global layer_start global layer_end layer_start = slice_size * local_rank - layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start) - - for i in range(model.config.num_hidden_layers): - if i < layer_start or i >= layer_end: - model._modules['model'].layers[i] = Dummy_DecoderLayer() - else: - # align layer_idx and len(past_key_values), otherwise abnormal output - model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start - - if local_rank != 0: - model._modules['model'].embed_tokens = DummyLayer() - if local_rank != pipeline_parallel_stages - 1: - model._modules['model'].norm = DummyLayer() - model._modules['lm_head'] = DummyLayer() + layer_end = layer_start + min(slice_size, num_layers - layer_start) + + if model.config.architectures is not None \ + and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]: + # for chatglm3-6b + for i in range(num_layers): + if i < layer_start or i >= layer_end: + model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock() + else: + model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \ + i - layer_start + + if local_rank != 0: + model._modules['transformer'].embedding = DummyLayer() + if local_rank != pipeline_parallel_stages - 1: + model._modules['transformer'].encoder.final_layernorm = DummyLayer() + model._modules['transformer'].output_layer = DummyLayer() + else: + for i in range(num_layers): + if i < layer_start or i >= layer_end: + model._modules['model'].layers[i] = Dummy_DecoderLayer() + else: + model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start + + if local_rank != 0: + model._modules['model'].embed_tokens = DummyLayer() + if local_rank != pipeline_parallel_stages - 1: + model._modules['model'].norm = DummyLayer() + model._modules['lm_head'] = DummyLayer() model.pipeline_parallel_stages = pipeline_parallel_stages model = model.to(f'xpu:{local_rank}') @@ -176,6 +210,7 @@ def pipeline_parallel_generate(self, global layer_start global layer_end + global num_layers self.first_token_time = 0 self.next_token_time = []