diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md b/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
index a2efa1df992..1d099da3677 100644
--- a/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
+++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
@@ -12,6 +12,7 @@ To run this example with IPEX-LLM on Intel GPUs, we have some recommended requir
- [Qwen/Qwen1.5-7B-Chat](./run_qwen1.5_arc_2_card.sh)
- [Qwen/Qwen1.5-14B-Chat](./run_qwen1.5_arc_2_card.sh)
- [Qwen/Qwen1.5-32B-Chat](./run_qwen1.5_arc_2_card.sh)
+- [THUDM/chatglm3-6b](./run_chatglm_arc_2_card.sh)
- [baichuan-inc/Baichuan2-7B-Chat](./run_baichuan2_arc_2_card.sh)
- [baichuan-inc/Baichuan2-13B-Chat](./run_baichuan2_arc_2_card.sh)
- [microsoft/Phi-3-mini-4k-instruct](./run_phi3_arc_2_card.sh)
@@ -71,6 +72,21 @@ bash run_qwen1.5_arc_2_card.sh
+
+ Show chatglm example
+
+#### Run chatglm3-6B on two Intel Arc A770
+
+You could specify `--repo-id-or-model-path` in the test script to be the huggingface repo id for chatglm to be downloaded, or the path to the huggingface checkpoint folder. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine.
+
+```bash
+bash run_chatglm_arc_2_card.sh
+```
+
+
+
+
+
Show Baichuan2 example
diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py b/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py
index 1be06e7072d..90d662ac029 100644
--- a/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py
+++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py
@@ -19,7 +19,7 @@
import time
import argparse
-from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel
+from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
from transformers import AutoTokenizer
init_pipeline_parallel()
@@ -41,13 +41,21 @@
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
- model = AutoModelForCausalLM.from_pretrained(model_path,
- load_in_4bit=True,
- optimize_model=True,
- trust_remote_code=True,
- use_cache=True,
- torch_dtype=torch.float16,
- pipeline_parallel_stages=args.gpu_num)
+ try:
+ model = AutoModelForCausalLM.from_pretrained(model_path,
+ load_in_4bit=True,
+ optimize_model=True,
+ trust_remote_code=True,
+ use_cache=True,
+ torch_dtype=torch.float16,
+ pipeline_parallel_stages=args.gpu_num)
+ except:
+ model = AutoModel.from_pretrained(model_path,
+ load_in_4bit=True,
+ optimize_model=True,
+ trust_remote_code=True,
+ use_cache=True,
+ pipeline_parallel_stages=args.gpu_num)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
diff --git a/python/llm/example/GPU/Pipeline-Parallel-Inference/run_chatglm_arc_2_card.sh b/python/llm/example/GPU/Pipeline-Parallel-Inference/run_chatglm_arc_2_card.sh
new file mode 100644
index 00000000000..ab275117364
--- /dev/null
+++ b/python/llm/example/GPU/Pipeline-Parallel-Inference/run_chatglm_arc_2_card.sh
@@ -0,0 +1,31 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+source /opt/intel/oneapi/setvars.sh
+export MASTER_ADDR=127.0.0.1
+export MASTER_PORT=9090
+export FI_PROVIDER=tcp
+export USE_XETLA=OFF
+export OMP_NUM_THREADS=6
+if [[ $KERNEL_VERSION != *"6.5"* ]]; then
+ export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+fi
+export TORCH_LLM_ALLREDUCE=0
+
+NUM_GPUS=2 # number of used GPU
+# To run chatglm3-6b
+CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
+ generate.py --repo-id-or-model-path 'THUDM/chatglm3-6b' --gpu-num $NUM_GPUS
diff --git a/python/llm/src/ipex_llm/transformers/models/chatglm2.py b/python/llm/src/ipex_llm/transformers/models/chatglm2.py
index 7eebf1d0dbf..2bff252150d 100644
--- a/python/llm/src/ipex_llm/transformers/models/chatglm2.py
+++ b/python/llm/src/ipex_llm/transformers/models/chatglm2.py
@@ -74,10 +74,12 @@ def chatglm2_model_forward(
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- batch_size, seq_length = input_ids.shape
-
if inputs_embeds is None:
+ batch_size, seq_length = input_ids.shape
inputs_embeds = self.embedding(input_ids)
+ else:
+ inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
+ seq_length, batch_size, _ = inputs_embeds.shape
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
diff --git a/python/llm/src/ipex_llm/transformers/pipeline_parallel.py b/python/llm/src/ipex_llm/transformers/pipeline_parallel.py
index 92cb7d726a3..b13e39bc36a 100644
--- a/python/llm/src/ipex_llm/transformers/pipeline_parallel.py
+++ b/python/llm/src/ipex_llm/transformers/pipeline_parallel.py
@@ -71,6 +71,19 @@ def forward(self, hidden_states, past_key_value=None, use_cache=False, **kwargs)
return outputs
+class Dummy_GLMBlock(nn.Module):
+ def __init__(self, *args):
+ super().__init__()
+ # to avoid AttributeError
+ self.input_layernorm = DummyLayer()
+ self.mlp = Dummy_MLPLayer()
+
+ def forward(
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
+ ):
+ return hidden_states, kv_cache
+
+
def init_pipeline_parallel():
import oneccl_bindings_for_pytorch
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
@@ -79,28 +92,49 @@ def init_pipeline_parallel():
def pipeline_parallel(model, pipeline_parallel_stages):
- slice_size = (model.config.num_hidden_layers + pipeline_parallel_stages - 1) // \
- pipeline_parallel_stages
+ global num_layers
+ if hasattr(model.config, 'num_hidden_layers'):
+ num_layers = model.config.num_hidden_layers
+ elif hasattr(model.config, 'num_layers'):
+ # for chatglm3-6b
+ num_layers = model.config.num_layers
+
+ slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages
local_rank = dist.get_rank()
global layer_start
global layer_end
layer_start = slice_size * local_rank
- layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
-
- for i in range(model.config.num_hidden_layers):
- if i < layer_start or i >= layer_end:
- model._modules['model'].layers[i] = Dummy_DecoderLayer()
- else:
- # align layer_idx and len(past_key_values), otherwise abnormal output
- model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
-
- if local_rank != 0:
- model._modules['model'].embed_tokens = DummyLayer()
- if local_rank != pipeline_parallel_stages - 1:
- model._modules['model'].norm = DummyLayer()
- model._modules['lm_head'] = DummyLayer()
+ layer_end = layer_start + min(slice_size, num_layers - layer_start)
+
+ if model.config.architectures is not None \
+ and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]:
+ # for chatglm3-6b
+ for i in range(num_layers):
+ if i < layer_start or i >= layer_end:
+ model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
+ else:
+ model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
+ i - layer_start
+
+ if local_rank != 0:
+ model._modules['transformer'].embedding = DummyLayer()
+ if local_rank != pipeline_parallel_stages - 1:
+ model._modules['transformer'].encoder.final_layernorm = DummyLayer()
+ model._modules['transformer'].output_layer = DummyLayer()
+ else:
+ for i in range(num_layers):
+ if i < layer_start or i >= layer_end:
+ model._modules['model'].layers[i] = Dummy_DecoderLayer()
+ else:
+ model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
+
+ if local_rank != 0:
+ model._modules['model'].embed_tokens = DummyLayer()
+ if local_rank != pipeline_parallel_stages - 1:
+ model._modules['model'].norm = DummyLayer()
+ model._modules['lm_head'] = DummyLayer()
model.pipeline_parallel_stages = pipeline_parallel_stages
model = model.to(f'xpu:{local_rank}')
@@ -176,6 +210,7 @@ def pipeline_parallel_generate(self,
global layer_start
global layer_end
+ global num_layers
self.first_token_time = 0
self.next_token_time = []