Skip to content

Commit

Permalink
Initial support of NPU level0 Model (#12177)
Browse files Browse the repository at this point in the history
* first commit to support load dll and init llm pipeline

* add init generate

* fix style

* small updates

* fix style and check tokens number
  • Loading branch information
rnwang04 authored Oct 11, 2024
1 parent ac44e98 commit 4d93bb8
Show file tree
Hide file tree
Showing 4 changed files with 417 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


import torch
import time
import argparse
from ipex_llm.transformers.npu_pipeline_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.utils import logging

logger = logging.get_logger(__name__)

def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)

if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default=r"C:\\Llama2-converted-weights\\",
help="The folder path of converted model blobs",
)
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-output-len", type=int, default=1024)

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = AutoModelForCausalLM.from_pretrained(model_path,
ov_model=True,
max_output_len=args.max_output_len,
model_name="Model70")

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

DEFAULT_SYSTEM_PROMPT = """\
"""

print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("input length:", len(_input_ids[0]))
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict,
)
end = time.time()
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
print("success shut down")
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from .pipeline_model import *
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import sys
import ctypes
import pathlib
from ipex_llm.utils.common import invalidInputError


def get_shared_lib_info(lib_base_name: str):
# Determine the file extension based on the platform
if sys.platform.startswith("linux") or sys.platform == "darwin":
lib_ext = ".so"
elif sys.platform == "win32":
lib_ext = ".dll"
else:
invalidInputError(False, "Unsupported platform.")

# Construct the paths to the possible shared library names (python/llm/src/ipex-llm/llm/libs)
_base_path = pathlib.Path(__file__).parent.parent.parent.resolve()
_base_path = _base_path / 'libs'

lib_path = os.path.join(_base_path, lib_base_name + lib_ext)

return _base_path, lib_path

_, _lib_path = get_shared_lib_info("pipeline")

# Load the library
_lib = ctypes.cdll.LoadLibrary(_lib_path)

_lib.InitLLMPipeline.argtypes = [ctypes.c_int] * 5 + [ctypes.c_char_p] * 5
_lib.InitLLMPipeline.restype = ctypes.c_int

_lib.generate_serve.argtypes = [ctypes.c_int] * 5
_lib.generate_serve.restype = ctypes.c_int


def InitLLMPipeline(kv_len: int, num_head: int, head_dim: int, num_layers: int, vocab_size: int,
model_weight_dir: str, model_name: str,
first_blob_name: str, last_blob_name: str, rest_blob_name: str):
return _lib.InitLLMPipeline(kv_len, num_head, head_dim, num_layers, vocab_size,
model_weight_dir.encode('utf-8'), model_name.encode('utf-8'),
first_blob_name.encode('utf-8'), last_blob_name.encode('utf-8'),
rest_blob_name.encode('utf-8'))


def generate_serve(kv_len: int, num_head: int, head_dim: int, num_layers: int,
param_n_output: int):
_lib.generate_serve(kv_len, num_head, head_dim, num_layers, param_n_output)
Loading

0 comments on commit 4d93bb8

Please sign in to comment.