diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index dcb86080b5b..6ad0b983f7a 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -1267,7 +1267,19 @@ def _optimize_post(model, lightweight_bmm=False): from ipex_llm.transformers.models.llama import llama_rms_norm_forward from ipex_llm.transformers.models.llama import llama_mlp_forward - if model.config.model_type == "llama": + if model.config.model_type == "llama" and model.config.rope_scaling is not None: + # llama 3.2 + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from ipex_llm.transformers.models.common import rms_norm_forward + from ipex_llm.transformers.models.common import mlp_silu_forward + from ipex_llm.transformers.models.llama32 import llama_model_forward + from ipex_llm.transformers.models.llama32 import llama_attention_forward + convert_forward(model, module.LlamaRMSNorm, rms_norm_forward) + convert_forward(model, module.LlamaMLP, mlp_silu_forward) + convert_forward(model, module.LlamaModel, llama_model_forward) + convert_forward(model, module.LlamaAttention, llama_attention_forward) + elif model.config.model_type == "llama": from transformers.models.llama.modeling_llama import LlamaRMSNorm from transformers.models.llama.modeling_llama import LlamaMLP from transformers.models.llama.modeling_llama import LlamaAttention diff --git a/python/llm/src/ipex_llm/transformers/kv.py b/python/llm/src/ipex_llm/transformers/kv.py index 8b20f546893..97b345cda4c 100644 --- a/python/llm/src/ipex_llm/transformers/kv.py +++ b/python/llm/src/ipex_llm/transformers/kv.py @@ -24,12 +24,16 @@ init_fp8_kv_cache, append_fp8_kv_cache, init_kv_cache, append_kv_cache, extend_kv_cache ) -from typing import Optional, Dict, Tuple, Any +from typing import Optional, Dict, Tuple, Any, List from transformers.cache_utils import DynamicCache from ipex_llm.utils.common.log4Error import invalidInputError class DynamicFp8Cache(DynamicCache): + def __init__(self, num_hidden_layers: Optional[int] = None) -> None: + # ignore num_hidden_layers to fix transformers >= 4.45 + super().__init__() + def update( self, key_states: torch.Tensor, @@ -37,6 +41,9 @@ def update( layer_idx: int, cache_kwargs: Optional[Dict[str, Any]]=None, ) -> Tuple[torch.Tensor, torch.Tensor]: + # fix converting empty DynamicCache in transformers >= 4.45 + if key_states == []: + return key_states, value_states batch_size, num_heads, seq_len, head_dim = key_states.shape @@ -71,6 +78,10 @@ def update( class DynamicNormalCache(DynamicCache): KV_ALLOC_BLOCK_LENGTH = 256 + def __init__(self, num_hidden_layers: Optional[int] = None) -> None: + # ignore num_hidden_layers to fix transformers >= 4.45 + super().__init__() + def update( self, key_states: torch.Tensor, @@ -78,6 +89,9 @@ def update( layer_idx: int, cache_kwargs: Optional[Dict[str, Any]]=None, ) -> Tuple[torch.Tensor, torch.Tensor]: + # fix converting empty DynamicCache in transformers >= 4.45 + if key_states == []: + return key_states, value_states batch_size, num_heads, seq_len, head_dim = key_states.shape @@ -257,6 +271,9 @@ def update( KV_CACHE_ALLOC_BLOCK_LENGTH: int, cache_kwargs: Optional[Dict[str, Any]]=None, ) -> Tuple[torch.Tensor, torch.Tensor]: + # fix converting empty DynamicCache in transformers >= 4.45 + if key_states == []: + return key_states, value_states bsz, num_heads, seq_len, head_dim = key_states.shape @@ -354,6 +371,10 @@ def update( KV_CACHE_ALLOC_BLOCK_LENGTH: int, cache_kwargs: Optional[Dict[str, Any]]=None, ) -> Tuple[torch.Tensor, torch.Tensor]: + # fix converting empty DynamicCache in transformers >= 4.45 + if key_states == []: + return key_states, value_states + bsz, num_heads, seq_len, head_dim = key_states.shape if layer_idx == 0: diff --git a/python/llm/src/ipex_llm/transformers/models/llama32.py b/python/llm/src/ipex_llm/transformers/models/llama32.py new file mode 100644 index 00000000000..9889797c832 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/models/llama32.py @@ -0,0 +1,236 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py +# which is licensed under Apache License 2.0: +# +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import torch + +from typing import Optional, Tuple, Union +from transformers.cache_utils import Cache +from transformers.modeling_outputs import BaseModelOutputWithPast +from transformers.models.llama.modeling_llama import repeat_kv +from transformers.models.llama.modeling_llama import apply_rotary_pos_emb + +from ipex_llm.utils.common import invalidInputError +from ipex_llm.transformers.models.common import attention_softmax +from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal +from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache +from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache + + +def llama_model_forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = ( + output_attentions if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + # IPEX-LLM OPT start: kv cache and quantize kv cache + inputs = input_ids if input_ids is not None else inputs_embeds + use_cache = True if inputs.device.type == "xpu" else use_cache + use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs) + if use_cache: + if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): + past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) + elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): + past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) + # IPEX-LLM OPT end + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + invalidInputError((input_ids is None) ^ (inputs_embeds is None), + "You cannot specify both input_ids and inputs_embeds at the same time, " + "and must specify either one") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +def llama_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, + **kwargs, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + qkv = self.qkv_proj(hidden_states) + qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) + qkv = qkv.transpose(1, 2) + query_states, key_states, value_states = qkv.split([self.num_heads, + self.num_key_value_heads, + self.num_key_value_heads], dim=1) + + if position_embeddings is None: + cos, sin = self.rotary_emb(value_states, position_ids) + else: + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + key_states, value_states = past_key_value.update(key_states, value_states, + self.layer_idx, None) + + kv_seq_len = key_states.size(2) + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, :kv_seq_len] + + attn_weights = None + if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): + import xe_addons + if isinstance(past_key_value, DynamicFp8Cache): + attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask) + else: + attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask) + elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): + import xe_addons + if isinstance(past_key_value, DynamicFp8Cache): + attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, + value_states, causal_mask) + else: + attn_output = xe_addons.sdp_causal(query_states, key_states, + value_states, causal_mask) + else: + if isinstance(past_key_value, DynamicFp8Cache): + key_states, value_states = restore_fp8_kv_cache(key_states, value_states, + query_states.dtype) + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if causal_mask is not None: + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = attention_softmax(attn_weights, self.training) + attn_output = torch.matmul(attn_weights, value_states) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, -1) + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value