From 8e25de1126057841e9680a5ae1d8da70ddd01378 Mon Sep 17 00:00:00 2001 From: "Wang, Jian4" <61138589+hzjane@users.noreply.github.com> Date: Wed, 29 May 2024 10:00:26 +0800 Subject: [PATCH] LLM: Add codegeex2 example (#11143) * add codegeex example * update * update cpu * add GPU * add gpu * update readme --- README.md | 1 + docs/readthedocs/source/index.rst | 7 + .../Model/codegeex2/README.md | 83 +++++++++++ .../Model/codegeex2/generate.py | 69 +++++++++ .../PyTorch-Models/Model/codegeex2/README.md | 83 +++++++++++ .../Model/codegeex2/generate.py | 69 +++++++++ .../Model/codegeex2/README.md | 138 ++++++++++++++++++ .../Model/codegeex2/generate.py | 81 ++++++++++ .../PyTorch-Models/Model/codegeex2/README.md | 138 ++++++++++++++++++ .../Model/codegeex2/generate.py | 81 ++++++++++ 10 files changed, 750 insertions(+) create mode 100644 python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/README.md create mode 100644 python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py create mode 100644 python/llm/example/CPU/PyTorch-Models/Model/codegeex2/README.md create mode 100644 python/llm/example/CPU/PyTorch-Models/Model/codegeex2/generate.py create mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/README.md create mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py create mode 100644 python/llm/example/GPU/PyTorch-Models/Model/codegeex2/README.md create mode 100644 python/llm/example/GPU/PyTorch-Models/Model/codegeex2/generate.py diff --git a/README.md b/README.md index d857bd0c7d8..23276739e39 100644 --- a/README.md +++ b/README.md @@ -205,6 +205,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | StableLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/stablelm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/stablelm) | | CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegemma) | | Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere) | +| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2) | ## Get Support - Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) diff --git a/docs/readthedocs/source/index.rst b/docs/readthedocs/source/index.rst index c630e16beed..59b1c1b15c8 100644 --- a/docs/readthedocs/source/index.rst +++ b/docs/readthedocs/source/index.rst @@ -604,6 +604,13 @@ Verified Models link + + CodeGeeX2 + + link + + link + diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/README.md new file mode 100644 index 00000000000..91a0a8833c6 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/README.md @@ -0,0 +1,83 @@ +# CodeGeeX2 + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeex2 models which is implemented based on the ChatGLM2 architecture trained on more code data. We utilize the [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model. + +## 0. Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example 1: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: + +On Linux: + +```bash +conda create -n llm python=3.11 # recommend to use Python 3.11 +conda activate llm + +# install the latest ipex-llm nightly build with 'all' option +pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu +``` + +On Windows: + +```cmd +conda create -n llm python=3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeex2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex2-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```cmd +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init -t + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +# language: Python +# write a bubble sort function + +-------------------- Output -------------------- +# language: Python +# write a bubble sort function + + +def bubble_sort(lst): + for i in range(len(lst) - 1): + for j in range(len(lst) - 1 - i): + if lst[j] > lst[j + 1]: + lst[j], lst[j + 1] = lst[j + 1], lst[j] + return lst + + +print(bubble_sort([1, 2, 3, 4, 5, 6, 7, 8, +``` \ No newline at end of file diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py new file mode 100644 index 00000000000..3f788940316 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py @@ -0,0 +1,69 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from ipex_llm.transformers import AutoModel +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/THUDM/codegeex2-6b#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B-%EF%BD%9C-get-started +CODEGEEX_PROMPT_FORMAT = "{prompt}" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeGeeX2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b", + help='The huggingface repo id for the CodeGeeX2 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=128, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = CODEGEEX_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/CPU/PyTorch-Models/Model/codegeex2/README.md b/python/llm/example/CPU/PyTorch-Models/Model/codegeex2/README.md new file mode 100644 index 00000000000..91a0a8833c6 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/codegeex2/README.md @@ -0,0 +1,83 @@ +# CodeGeeX2 + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeex2 models which is implemented based on the ChatGLM2 architecture trained on more code data. We utilize the [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model. + +## 0. Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example 1: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: + +On Linux: + +```bash +conda create -n llm python=3.11 # recommend to use Python 3.11 +conda activate llm + +# install the latest ipex-llm nightly build with 'all' option +pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu +``` + +On Windows: + +```cmd +conda create -n llm python=3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeex2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex2-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```cmd +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init -t + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +# language: Python +# write a bubble sort function + +-------------------- Output -------------------- +# language: Python +# write a bubble sort function + + +def bubble_sort(lst): + for i in range(len(lst) - 1): + for j in range(len(lst) - 1 - i): + if lst[j] > lst[j + 1]: + lst[j], lst[j + 1] = lst[j + 1], lst[j] + return lst + + +print(bubble_sort([1, 2, 3, 4, 5, 6, 7, 8, +``` \ No newline at end of file diff --git a/python/llm/example/CPU/PyTorch-Models/Model/codegeex2/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/codegeex2/generate.py new file mode 100644 index 00000000000..3f788940316 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/codegeex2/generate.py @@ -0,0 +1,69 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from ipex_llm.transformers import AutoModel +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/THUDM/codegeex2-6b#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B-%EF%BD%9C-get-started +CODEGEEX_PROMPT_FORMAT = "{prompt}" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeGeeX2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b", + help='The huggingface repo id for the CodeGeeX2 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=128, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = CODEGEEX_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/README.md new file mode 100644 index 00000000000..bc8cfa62907 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/README.md @@ -0,0 +1,138 @@ +# CodeGeeX2 + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeeX2 models which is implemented based on the ChatGLM2 architecture trained on more code data on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example 1: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. + +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. + +### 4. Running examples +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeeX2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. + +#### Sample Output +#### [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex-6b) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +# language: Python +# write a bubble sort function + +-------------------- Output -------------------- +# language: Python +# write a bubble sort function + + +def bubble_sort(lst): + for i in range(len(lst) - 1): + for j in range(len(lst) - 1 - i): + if lst[j] > lst[j + 1]: + lst[j], lst[j + 1] = lst[j + 1], lst[j] + return lst + + +print(bubble_sort([5, 2, 3, 4, 1])) +``` diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py new file mode 100644 index 00000000000..ddc9dd53c95 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2/generate.py @@ -0,0 +1,81 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from ipex_llm.transformers import AutoModel +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/THUDM/codegeex2-6b#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B-%EF%BD%9C-get-started +CODEGEEX_PROMPT_FORMAT = "{prompt}" + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b", + help='The huggingface repo id for the CodeGeeX2 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=128, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + model = model.half().to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = CODEGEEX_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + # ipex_llm model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + + # start inference + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/codegeex2/README.md b/python/llm/example/GPU/PyTorch-Models/Model/codegeex2/README.md new file mode 100644 index 00000000000..bc8cfa62907 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/codegeex2/README.md @@ -0,0 +1,138 @@ +# CodeGeeX2 + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeeX2 models which is implemented based on the ChatGLM2 architecture trained on more code data on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example 1: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. + +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. + +### 4. Running examples +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeeX2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. + +#### Sample Output +#### [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex-6b) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +# language: Python +# write a bubble sort function + +-------------------- Output -------------------- +# language: Python +# write a bubble sort function + + +def bubble_sort(lst): + for i in range(len(lst) - 1): + for j in range(len(lst) - 1 - i): + if lst[j] > lst[j + 1]: + lst[j], lst[j + 1] = lst[j + 1], lst[j] + return lst + + +print(bubble_sort([5, 2, 3, 4, 1])) +``` diff --git a/python/llm/example/GPU/PyTorch-Models/Model/codegeex2/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/codegeex2/generate.py new file mode 100644 index 00000000000..ddc9dd53c95 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/codegeex2/generate.py @@ -0,0 +1,81 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from ipex_llm.transformers import AutoModel +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/THUDM/codegeex2-6b#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B-%EF%BD%9C-get-started +CODEGEEX_PROMPT_FORMAT = "{prompt}" + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b", + help='The huggingface repo id for the CodeGeeX2 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=128, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + model = model.half().to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = CODEGEEX_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + # ipex_llm model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + + # start inference + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str)