diff --git a/python/llm/src/ipex_llm/transformers/npu_models/convert.py b/python/llm/src/ipex_llm/transformers/npu_models/convert.py index 3818d1c8ee8..bc88dacd5ef 100644 --- a/python/llm/src/ipex_llm/transformers/npu_models/convert.py +++ b/python/llm/src/ipex_llm/transformers/npu_models/convert.py @@ -86,6 +86,22 @@ def optimize_llm(model: torch.nn.Module): convert_forward(model, LlamaAttention, llama_attention_forward) convert_forward(model, LlamaMLP, llama_mlp_forward) + elif model.config.model_type == "mistral": + from ipex_llm.transformers.npu_models.mistral import merge_qkv + from ipex_llm.transformers.npu_models.mistral import merge_mlp + model.apply(merge_qkv) + model.apply(merge_mlp) + + from ipex_llm.transformers.npu_models.mistral import mistral_model_forward + from ipex_llm.transformers.npu_models.mistral import mistral_attention_forward + from ipex_llm.transformers.npu_models.mistral import mistral_mlp_forward + from transformers.models.mistral.modeling_mistral import MistralModel + from transformers.models.mistral.modeling_mistral import MistralAttention + from transformers.models.mistral.modeling_mistral import MistralMLP + convert_forward(model, MistralModel, mistral_model_forward) + convert_forward(model, MistralAttention, mistral_attention_forward) + convert_forward(model, MistralMLP, mistral_mlp_forward) + elif model.config.model_type == "qwen2": from ipex_llm.transformers.npu_models.qwen2 import merge_qkv from ipex_llm.transformers.npu_models.qwen2 import merge_mlp diff --git a/python/llm/src/ipex_llm/transformers/npu_models/llama.py b/python/llm/src/ipex_llm/transformers/npu_models/llama.py index e665133b7b7..ab4c2025a25 100644 --- a/python/llm/src/ipex_llm/transformers/npu_models/llama.py +++ b/python/llm/src/ipex_llm/transformers/npu_models/llama.py @@ -230,6 +230,7 @@ def llama_attention_forward( attn_mask=causal_mask, is_causal=self.is_causal and causal_mask is None and q_len > 1, ) + attn_weights = None else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) diff --git a/python/llm/src/ipex_llm/transformers/npu_models/mistral.py b/python/llm/src/ipex_llm/transformers/npu_models/mistral.py new file mode 100644 index 00000000000..12aef6ec1bd --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/npu_models/mistral.py @@ -0,0 +1,272 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/mistral/modeling_mistral.py +# which is licensed under Apache License 2.0: +# +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Optional, Tuple, List, Union + +import math +import torch +from transformers.cache_utils import Cache +from transformers.modeling_outputs import BaseModelOutputWithPast +from transformers.models.mistral.modeling_mistral import repeat_kv, apply_rotary_pos_emb +from transformers.models.mistral.modeling_mistral import MistralAttention, MistralMLP +from transformers.models.mistral.modeling_mistral import _prepare_4d_causal_attention_mask + +from ipex_llm.utils.common.log4Error import invalidInputError +from ipex_llm.transformers.npu_models.common import merge_linear + + +def merge_qkv(module: torch.nn.Module): + if isinstance(module, MistralAttention): + qkv_proj = merge_linear([ + module.q_proj, + module.k_proj, + module.v_proj, + ]) + module.qkv_proj = qkv_proj + del module.q_proj, module.k_proj, module.v_proj + + +def merge_mlp(module: torch.nn.Module): + if isinstance(module, MistralMLP): + gate_up_proj = merge_linear([ + module.gate_proj, + module.up_proj, + ]) + module.gate_up_proj = gate_up_proj + del module.gate_proj, module.up_proj + + +def mistral_model_forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = ( + output_attentions if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + invalidInputError(False, + ("You cannot specify both input_ids and inputs_embeds at the same time, " + "and must specify either one")) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + + if self.gradient_checkpointing and self.training and use_cache: + use_cache = False + + past_key_values_length = 0 + + # ipex-llm changes start + from ipex_llm.transformers.kv import DynamicNormalCache + if use_cache and not isinstance(past_key_values, DynamicNormalCache): + past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_seq_length() + # ipex-llm changes end + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, + dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids = position_ids.view(-1, seq_length).long() + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + # ipex-llm changes start + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + # ipex-llm changes end + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + # ipex-llm changes start + next_cache = next_decoder_cache if use_cache else None + # ipex-llm changes end + + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, + all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +def mistral_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + qkv = self.qkv_proj(hidden_states) + qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) + qkv = qkv.transpose(1, 2) + query_states, key_states, value_states = qkv.split([self.num_heads, + self.num_key_value_heads, + self.num_key_value_heads], dim=1) + + kv_seq_len = q_len + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, + cos, sin, position_ids) + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, + self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if query_states.size(2) == key_states.size(2): + # first token + from intel_npu_acceleration_library.functional import scaled_dot_product_attention + attn_output = scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + is_causal=attention_mask is None and bsz == 1 and q_len > 1, + ) + attn_weights = None + else: + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + if attention_mask is not None: + attn_weights = attn_weights + attention_mask + + attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, + dtype=torch.float32).to(value_states.dtype) + attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, + training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +def mistral_mlp_forward(self, x): + gate_up_proj = self.gate_up_proj(x) + gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1) + down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj) + return down_proj