diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples/llm-npu-cli.cpp b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples/llm-npu-cli.cpp index 66fed8b3a3f..fbaef01f304 100644 --- a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples/llm-npu-cli.cpp +++ b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples/llm-npu-cli.cpp @@ -98,11 +98,11 @@ std::string add_chat_history(npu_model_params model_params, return prompt; } - std::string run_generate(void* void_model, int32_t* embd_inp_ptr, int32_t embd_inp_size, - npu_model_params model_params, tokenizer_params tok_params, int32_t max_new_token, bool do_print){ + npu_model_params model_params, tokenizer_params tok_params, npu_generation_params generation_params, bool do_print){ auto start = std::chrono::high_resolution_clock::now(); - float* logits = run_prefill(void_model, embd_inp_ptr, embd_inp_size); + float* logits = run_prefill(void_model, embd_inp_ptr, embd_inp_size, + generation_params.repetition_penalty); int32_t token = llm_sample_token(logits, true, model_params.vocab_size); auto end = std::chrono::high_resolution_clock::now(); auto duration = std::chrono::duration_cast(end - start); @@ -115,8 +115,9 @@ std::string run_generate(void* void_model, int32_t* embd_inp_ptr, int32_t embd_i int token_nums = 0; start = std::chrono::high_resolution_clock::now(); - for (int i = 1; i < max_new_token; i++){ - auto logits = run_decode(void_model, embd[i-1]); + for (int i = 1; i < generation_params.max_new_token; i++){ + auto logits = run_decode(void_model, embd[i-1], + generation_params.repetition_penalty); int32_t token = llm_sample_token(logits, true, model_params.vocab_size); if (std::find(tok_params.eos_token_id.begin(), tok_params.eos_token_id.end(), token) == tok_params.eos_token_id.end()){ embd.push_back(token); @@ -207,6 +208,10 @@ int main(int argc, char ** argv) { tokenizer_params tok_params; load_tokenizer(tok_params, params.model); + npu_generation_params generation_params; + load_generation_config_from_file(generation_params, params.model); + generation_params.max_new_token = n_predict; + if (cnv_mode){ std::string prompt; std::string history = ""; @@ -228,9 +233,11 @@ int main(int argc, char ** argv) { full_prompt = add_chat_history(model_params, prompt, "", true); embd_inp = llm_tokenize(full_prompt, false); } + + generation_params.max_new_token = model_params.kv_len - embd_inp.size(); response = run_generate(model, embd_inp.data(), embd_inp.size(), - model_params, tok_params, model_params.kv_len - embd_inp.size(), false); + model_params, tok_params, generation_params, false); std::cout << "Assistant:"; std::cout << response << std::endl; @@ -251,7 +258,7 @@ int main(int argc, char ** argv) { // single text generation std::string output = run_generate(model, embd_inp.data(), embd_inp.size(), - model_params, tok_params, params.n_predict, true); + model_params, tok_params, generation_params, true); std::cout << "Output: " << std::endl; std::cout << output << std::endl; diff --git a/python/llm/src/ipex_llm/transformers/npu_models/convert.py b/python/llm/src/ipex_llm/transformers/npu_models/convert.py index f6589efa411..2ae1f26412e 100644 --- a/python/llm/src/ipex_llm/transformers/npu_models/convert.py +++ b/python/llm/src/ipex_llm/transformers/npu_models/convert.py @@ -413,7 +413,7 @@ def simple_generate( if token in eos: break token = run_decode(self.model_ptr, token, self.vocab_size, - input_list, repetition_penalty) + repetition_penalty) if streamer is not None: # rest tokens streamer.put(torch.tensor([token])) diff --git a/python/llm/src/ipex_llm/transformers/npu_models/npu_llm_cpp.py b/python/llm/src/ipex_llm/transformers/npu_models/npu_llm_cpp.py index 509003cf361..dc97852df4e 100644 --- a/python/llm/src/ipex_llm/transformers/npu_models/npu_llm_cpp.py +++ b/python/llm/src/ipex_llm/transformers/npu_models/npu_llm_cpp.py @@ -48,20 +48,16 @@ def get_shared_lib_info(lib_base_name: str): _lib.load_model_from_file.argtypes = [ctypes.c_char_p] _lib.load_model_from_file.restype = ctypes.c_void_p -_lib.run_prefill.argtypes = [ctypes.c_void_p, ctypes.POINTER(ctypes.c_int), ctypes.c_int] +_lib.run_prefill.argtypes = [ctypes.c_void_p, ctypes.POINTER(ctypes.c_int), ctypes.c_int, + ctypes.c_float] _lib.run_prefill.restype = ctypes.POINTER(ctypes.c_float) -_lib.run_decode.argtypes = [ctypes.c_void_p, ctypes.c_int] +_lib.run_decode.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.c_float] _lib.run_decode.restype = ctypes.POINTER(ctypes.c_float) _lib.llm_sample_token.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_bool, ctypes.c_int] _lib.llm_sample_token.restype = ctypes.c_int -_lib.process_logits.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, - ctypes.POINTER(ctypes.c_int), ctypes.c_int, - ctypes.c_float] -_lib.process_logits.restype = ctypes.POINTER(ctypes.c_float) - _lib.reset.argtypes = [ctypes.c_void_p] _lib.reset.restype = None @@ -81,23 +77,13 @@ def load_model_from_file(model_dir: str): def run_prefill(model_ptr, input_ids, vocab_size, repetition_penalty=1.0): input_ptr = (ctypes.c_int32 * len(input_ids))(*input_ids) input_len = len(input_ids) - plogits = _lib.run_prefill(model_ptr, input_ptr, input_len) - if repetition_penalty != 1: - plogits = _lib.process_logits(plogits, vocab_size, - input_ptr, input_len, - repetition_penalty) + plogits = _lib.run_prefill(model_ptr, input_ptr, input_len, repetition_penalty) new_token = _lib.llm_sample_token(plogits, True, vocab_size) return new_token -def run_decode(model_ptr, input_id, vocab_size, updated_input_ids, repetition_penalty=1.0): - plogits = _lib.run_decode(model_ptr, input_id) - if repetition_penalty != 1: - updated_input_ptr = (ctypes.c_int32 * len(updated_input_ids))(*updated_input_ids) - updated_input_len = len(updated_input_ids) - plogits = _lib.process_logits(plogits, vocab_size, - updated_input_ptr, updated_input_len, - repetition_penalty) +def run_decode(model_ptr, input_id, vocab_size, repetition_penalty=1.0): + plogits = _lib.run_decode(model_ptr, input_id, repetition_penalty) new_token = _lib.llm_sample_token(plogits, True, vocab_size) return new_token