diff --git a/python/llm/example/CPU/README.md b/python/llm/example/CPU/README.md index a0b59bfc22a..298db0c10d9 100644 --- a/python/llm/example/CPU/README.md +++ b/python/llm/example/CPU/README.md @@ -12,7 +12,7 @@ This folder contains examples of running IPEX-LLM on Intel CPU: - [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation - [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel CPUs - [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel CPUs - +- [StableDiffusion-Models](StableDiffusion): running **stable diffusion** models on Intel CPUs. ## System Support **Hardware**: diff --git a/python/llm/example/CPU/StableDiffusion/README.md b/python/llm/example/CPU/StableDiffusion/README.md new file mode 100644 index 00000000000..d1dcbb75a86 --- /dev/null +++ b/python/llm/example/CPU/StableDiffusion/README.md @@ -0,0 +1,45 @@ +# Stable Diffusion +In this directory, you will find examples on how to run StableDiffusion models on CPU. + +### 1. Installation +#### 1.1. Install IPEX-LLM +Follow the instructions in [IPEX-LLM CPU installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_cpu.html) to install ipex-llm. We recommend to use miniconda to manage your python environment. + +#### 1.2 Install dependencies for Stable Diffusion +Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion. +```bash +conda activate diffusion +pip install diffusers["torch"] transformers +pip install -U PEFT transformers +pip install setuptools==69.5.1 +``` + +### 2. Examples + +#### 2.1 StableDiffusion XL Example +The example shows how to run StableDiffusion XL example on Intel CPU. +```bash +python ./sdxl.py +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`. +- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`. +- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-cpu.png`. +- `--num-steps`: argument defining the number of inference steps. It is default to be `20`. + +The sample output image looks like below. +![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-cpu.png) + +#### 4.2 LCM-LoRA Example +The example shows how to performing inference with LCM-LoRA on Intel CPU. +```bash +python ./lora-lcm.py +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`. +- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`. +- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`. +- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-cpu.png`. +- `--num-steps`: argument defining the number of inference steps. It is default to be `4`. \ No newline at end of file diff --git a/python/llm/example/CPU/StableDiffusion/lora-lcm.py b/python/llm/example/CPU/StableDiffusion/lora-lcm.py new file mode 100644 index 00000000000..b806a487c73 --- /dev/null +++ b/python/llm/example/CPU/StableDiffusion/lora-lcm.py @@ -0,0 +1,55 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora + +import torch +from diffusers import DiffusionPipeline, LCMScheduler +import ipex_llm +import argparse + + +def main(args): + pipe = DiffusionPipeline.from_pretrained( + args.repo_id_or_model_path, + torch_dtype=torch.bfloat16, + ).to("cpu") + + # set scheduler + pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) + + # load LCM-LoRA + pipe.load_lora_weights(args.lora_weights_path) + + generator = torch.manual_seed(42) + image = pipe( + prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0 + ).images[0] + image.save(args.save_path) + +if __name__=="__main__": + parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm") + parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0", + help='The huggingface repo id for the stable diffusion model checkpoint') + parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl", + help='The huggingface repo id for the lcm lora sdxl checkpoint') + parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k", + help='Prompt to infer') + parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-cpu.png", + help="Path to save the generated figure") + parser.add_argument('--num-steps',type=int,default=4, + help="Number of inference steps") + args = parser.parse_args() + main(args) \ No newline at end of file diff --git a/python/llm/example/CPU/StableDiffusion/sdxl.py b/python/llm/example/CPU/StableDiffusion/sdxl.py new file mode 100644 index 00000000000..7b07731796d --- /dev/null +++ b/python/llm/example/CPU/StableDiffusion/sdxl.py @@ -0,0 +1,47 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl + +from diffusers import AutoPipelineForText2Image +import torch +import ipex_llm +import numpy as np +from PIL import Image +import argparse + + +def main(args): + pipeline_text2image = AutoPipelineForText2Image.from_pretrained( + args.repo_id_or_model_path, + torch_dtype=torch.float16, + use_safetensors=True + ).to("cpu") + + image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0] + image.save(args.save_path) + +if __name__=="__main__": + parser = argparse.ArgumentParser(description="Stable Diffusion") + parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0", + help='The huggingface repo id for the stable diffusion model checkpoint') + parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k", + help='Prompt to infer') + parser.add_argument('--save-path',type=str,default="sdxl-cpu.png", + help="Path to save the generated figure") + parser.add_argument('--num-steps',type=int,default=20, + help="Number of inference steps") + args = parser.parse_args() + main(args) \ No newline at end of file diff --git a/python/llm/example/GPU/README.md b/python/llm/example/GPU/README.md index 68c325afef3..ab13bf95485 100644 --- a/python/llm/example/GPU/README.md +++ b/python/llm/example/GPU/README.md @@ -14,7 +14,8 @@ This folder contains examples of running IPEX-LLM on Intel GPU: - [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change") - [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs - [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs -- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics +- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics. +- [StableDiffusion](StableDiffusion): running **stable diffusion** with IPEX-LLM on Intel GPUs. ## System Support diff --git a/python/llm/example/GPU/StableDiffusion/README.md b/python/llm/example/GPU/StableDiffusion/README.md new file mode 100644 index 00000000000..94932c3a454 --- /dev/null +++ b/python/llm/example/GPU/StableDiffusion/README.md @@ -0,0 +1,119 @@ +# Stable Diffusion +In this directory, you will find examples on how to run StableDiffusion models on [Intel GPUs](../README.md). + +### 1. Installation +#### 1.1 Install IPEX-LLM +Follow the instructions in IPEX-GPU installation guides ([Linux Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), [Windows Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html)) according to your system to install IPEX-LLM. After the installation, you should have created a conda environment, named diffusion for instance. + +#### 1.2 Install dependencies for Stable Diffusion +Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion. +```bash +conda activate diffusion +pip install diffusers["torch"] transformers +pip install -U PEFT transformers +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. + +### 4. Examples + +#### 4.1 StableDiffusion XL Example +The example shows how to run StableDiffusion XL example on Intel GPU. +```bash +python ./sdxl.py +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`. +- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`. +- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-gpu.png`. +- `--num-steps`: argument defining the number of inference steps. It is default to be `20`. + + +The sample output image looks like below. +![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-gpu.png) + +#### 4.2 LCM-LoRA Example +The example shows how to performing inference with LCM-LoRA on Intel GPU. +```bash +python ./lora-lcm.py +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`. +- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`. +- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`. +- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-gpu.png`. +- `--num-steps`: argument defining the number of inference steps. It is default to be `4`. diff --git a/python/llm/example/GPU/StableDiffusion/lora-lcm.py b/python/llm/example/GPU/StableDiffusion/lora-lcm.py new file mode 100644 index 00000000000..c9ab66663dc --- /dev/null +++ b/python/llm/example/GPU/StableDiffusion/lora-lcm.py @@ -0,0 +1,55 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora + +import torch +from diffusers import DiffusionPipeline, LCMScheduler +import ipex_llm +import argparse + + +def main(args): + pipe = DiffusionPipeline.from_pretrained( + args.repo_id_or_model_path, + torch_dtype=torch.bfloat16, + ).to("xpu") + + # set scheduler + pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) + + # load LCM-LoRA + pipe.load_lora_weights(args.lora_weights_path) + + generator = torch.manual_seed(42) + image = pipe( + prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0 + ).images[0] + image.save(args.save_path) + +if __name__=="__main__": + parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm") + parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0", + help='The huggingface repo id for the stable diffusion model checkpoint') + parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl", + help='The huggingface repo id for the lcm lora sdxl checkpoint') + parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k", + help='Prompt to infer') + parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-gpu.png", + help="Path to save the generated figure") + parser.add_argument('--num-steps',type=int,default=4, + help="Number of inference steps") + args = parser.parse_args() + main(args) \ No newline at end of file diff --git a/python/llm/example/GPU/StableDiffusion/sdxl.py b/python/llm/example/GPU/StableDiffusion/sdxl.py new file mode 100644 index 00000000000..3b2c7ddbb5a --- /dev/null +++ b/python/llm/example/GPU/StableDiffusion/sdxl.py @@ -0,0 +1,47 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl + +from diffusers import AutoPipelineForText2Image +import torch +import ipex_llm +import numpy as np +from PIL import Image +import argparse + + +def main(args): + pipeline_text2image = AutoPipelineForText2Image.from_pretrained( + args.repo_id_or_model_path, + torch_dtype=torch.bfloat16, + use_safetensors=True + ).to("xpu") + + image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0] + image.save(args.save_path) + +if __name__=="__main__": + parser = argparse.ArgumentParser(description="Stable Diffusion") + parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0", + help='The huggingface repo id for the stable diffusion model checkpoint') + parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k", + help='Prompt to infer') + parser.add_argument('--save-path',type=str,default="sdxl-gpu.png", + help="Path to save the generated figure") + parser.add_argument('--num-steps',type=int,default=20, + help="Number of inference steps") + args = parser.parse_args() + main(args) \ No newline at end of file