diff --git a/README.md b/README.md
index 8901f4bb636..c996d430de2 100644
--- a/README.md
+++ b/README.md
@@ -207,6 +207,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegemma) |
| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere) |
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2) |
+| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm) |
## Get Support
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
diff --git a/docs/readthedocs/source/index.rst b/docs/readthedocs/source/index.rst
index 1071b5692ab..7c4d77cb2ac 100644
--- a/docs/readthedocs/source/index.rst
+++ b/docs/readthedocs/source/index.rst
@@ -618,6 +618,13 @@ Verified Models
link |
+
+ MiniCPM |
+
+ link |
+
+ link |
+
diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm/README.md
new file mode 100644
index 00000000000..34a4aced900
--- /dev/null
+++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm/README.md
@@ -0,0 +1,71 @@
+# MiniCPM
+In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models. For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
+
+## 0. Requirements
+To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
+
+## Example: Predict Tokens using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
+### 1. Install
+We suggest using conda to manage environment:
+
+On Linux:
+
+```bash
+conda create -n llm python=3.11
+conda activate llm
+
+# install ipex-llm with 'all' option
+pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
+```
+On Windows:
+
+```cmd
+conda create -n llm python=3.11
+conda activate llm
+
+pip install --pre --upgrade ipex-llm[all]
+```
+
+### 2. Run
+```
+python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
+>
+> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
+
+#### 2.1 Client
+On client Windows machine, it is recommended to run directly with full utilization of all cores:
+```cmd
+python ./generate.py
+```
+
+#### 2.2 Server
+For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
+
+E.g. on Linux,
+```bash
+# set IPEX-LLM env variables
+source ipex-llm-init
+
+# e.g. for a server with 48 cores per socket
+export OMP_NUM_THREADS=48
+numactl -C 0-47 -m 0 python ./generate.py
+```
+
+#### 2.3 Sample Output
+#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<用户>what is AI?
+-------------------- Output --------------------
+ <用户>what is AI? AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a broad field of computer
+```
\ No newline at end of file
diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm/generate.py
new file mode 100644
index 00000000000..8bdb2fcb09c
--- /dev/null
+++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm/generate.py
@@ -0,0 +1,72 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+
+from ipex_llm.transformers import AutoModelForCausalLM
+from transformers import AutoTokenizer
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
+ help='The huggingface repo id for the MiniCPM model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--prompt', type=str, default="What is AI?",
+ help='Prompt to infer')
+ parser.add_argument('--n-predict', type=int, default=32,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model in 4 bit,
+ # which convert the relevant layers in the model into INT4 format
+ model = AutoModelForCausalLM.from_pretrained(model_path,
+ load_in_4bit=True,
+ optimize_model=True,
+ trust_remote_code=True,
+ use_cache=True)
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+
+ # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
+ chat = [
+ { "role": "user", "content": args.prompt },
+ ]
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
+
+ # start inference
+ st = time.time()
+
+ output = model.generate(input_ids,
+ do_sample=False,
+ max_new_tokens=args.n_predict)
+ end = time.time()
+ output_str = tokenizer.decode(output[0], skip_special_tokens=False)
+ print(f'Inference time: {end-st} s')
+ print('-'*20, 'Prompt', '-'*20)
+ print(prompt)
+ print('-'*20, 'Output', '-'*20)
+ print(output_str)
diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md
index 8f4135ec48a..b3b7dc5f5b2 100644
--- a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md
+++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3/README.md
@@ -76,6 +76,7 @@ In the example, several arguments can be passed to satisfy your requirements:
#### 2.4 Sample Output
#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
```log
+Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?<|end|>
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/llama3/README.md b/python/llm/example/CPU/PyTorch-Models/Model/llama3/README.md
index f518d8873b4..ceadb191ab7 100644
--- a/python/llm/example/CPU/PyTorch-Models/Model/llama3/README.md
+++ b/python/llm/example/CPU/PyTorch-Models/Model/llama3/README.md
@@ -66,7 +66,7 @@ In the example, several arguments can be passed to satisfy your requirements:
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
-#### 2.3 Sample Output
+#### 2.4 Sample Output
#### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
```log
Inference time: xxxx s
@@ -84,4 +84,4 @@ What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence, such as:
1. Learning: AI
-```
+```
\ No newline at end of file
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/minicpm/README.md b/python/llm/example/CPU/PyTorch-Models/Model/minicpm/README.md
new file mode 100644
index 00000000000..6a14ffc2212
--- /dev/null
+++ b/python/llm/example/CPU/PyTorch-Models/Model/minicpm/README.md
@@ -0,0 +1,74 @@
+# MiniCPM
+In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate MiniCPM models. For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
+
+## Requirements
+To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
+
+## Example: Predict Tokens using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
+### 1. Install
+We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://conda-forge.org/download/).
+
+After installing conda, create a Python environment for IPEX-LLM:
+
+On Linux:
+
+```bash
+conda create -n llm python=3.11 # recommend to use Python 3.11
+conda activate llm
+
+# install the latest ipex-llm nightly build with 'all' option
+pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
+```
+
+On Windows:
+
+```cmd
+conda create -n llm python=3.11
+conda activate llm
+
+pip install --pre --upgrade ipex-llm[all]
+```
+
+### 2. Run
+```
+python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
+>
+> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
+
+#### 2.1 Client
+On client Windows machines, it is recommended to run directly with full utilization of all cores:
+```cmd
+python ./generate.py --prompt 'What is AI?'
+```
+
+#### 2.2 Server
+For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
+
+E.g. on Linux,
+```bash
+# set IPEX-LLM env variables
+source ipex-llm-init
+
+# e.g. for a server with 48 cores per socket
+export OMP_NUM_THREADS=48
+numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
+```
+
+#### 2.3 Sample Output
+#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<用户>what is AI?
+-------------------- Output --------------------
+ <用户>what is AI? AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a broad field of computer
+```
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/minicpm/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/minicpm/generate.py
new file mode 100644
index 00000000000..50ea8ff61d0
--- /dev/null
+++ b/python/llm/example/CPU/PyTorch-Models/Model/minicpm/generate.py
@@ -0,0 +1,74 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+
+from transformers import AutoTokenizer, AutoModelForCausalLM
+from ipex_llm import optimize_model
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
+ help='The huggingface repo id for the MiniCPM model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--prompt', type=str, default="What is AI?",
+ help='Prompt to infer')
+ parser.add_argument('--n-predict', type=int, default=32,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model
+ model = AutoModelForCausalLM.from_pretrained(model_path,
+ trust_remote_code=True,
+ torch_dtype='auto',
+ low_cpu_mem_usage=True,
+ use_cache=True)
+
+ # With only one line to enable IPEX-LLM optimization on model
+ model = optimize_model(model)
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+
+ # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
+ chat = [
+ { "role": "user", "content": args.prompt },
+ ]
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
+
+ # start inference
+ st = time.time()
+
+ output = model.generate(input_ids,
+ do_sample=False,
+ max_new_tokens=args.n_predict)
+ end = time.time()
+ output_str = tokenizer.decode(output[0], skip_special_tokens=False)
+ print(f'Inference time: {end-st} s')
+ print('-'*20, 'Prompt', '-'*20)
+ print(prompt)
+ print('-'*20, 'Output', '-'*20)
+ print(output_str)
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md b/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md
index d20b271ce9d..3cacedff2e3 100644
--- a/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md
+++ b/python/llm/example/CPU/PyTorch-Models/Model/phi-3/README.md
@@ -73,6 +73,7 @@ In the example, several arguments can be passed to satisfy your requirements:
#### 2.4 Sample Output
#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
```log
+Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?<|end|>
diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm/README.md
new file mode 100644
index 00000000000..45a213ba48e
--- /dev/null
+++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm/README.md
@@ -0,0 +1,123 @@
+# MiniCPM
+In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
+
+## 0. Requirements
+To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
+
+## Example: Predict Tokens using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
+### 1. Install
+#### 1.1 Installation on Linux
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11
+conda activate llm
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+```
+
+#### 1.2 Installation on Windows
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11 libuv
+conda activate llm
+
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+```
+
+### 2. Configures OneAPI environment variables for Linux
+
+> [!NOTE]
+> Skip this step if you are running on Windows.
+
+This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
+
+```bash
+source /opt/intel/oneapi/setvars.sh
+```
+
+### 3. Runtime Configurations
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
+#### 3.1 Configurations for Linux
+
+
+For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
+
+```bash
+export USE_XETLA=OFF
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+
+
+For Intel Data Center GPU Max Series
+
+```bash
+export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+export ENABLE_SDP_FUSION=1
+```
+> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
+
+
+
+
+For Intel iGPU
+
+```bash
+export SYCL_CACHE_PERSISTENT=1
+export BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+#### 3.2 Configurations for Windows
+
+
+For Intel iGPU
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+set BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+
+
+For Intel Arc™ A-Series Graphics
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+> [!NOTE]
+> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
+### 4. Running examples
+
+```
+python ./generate.py --prompt 'What is AI?'
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+#### Sample Output
+#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
+
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<用户>what is AI?
+-------------------- Output --------------------
+ <用户>what is AI? AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a field of computer science
+```
diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm/generate.py
new file mode 100644
index 00000000000..669162e61a1
--- /dev/null
+++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm/generate.py
@@ -0,0 +1,80 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+
+from ipex_llm.transformers import AutoModelForCausalLM
+from transformers import AutoTokenizer
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
+ help='The huggingface repo id for the MiniCPM model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--prompt', type=str, default="What is AI?",
+ help='Prompt to infer')
+ parser.add_argument('--n-predict', type=int, default=32,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model in 4 bit,
+ # which convert the relevant layers in the model into INT4 format
+ # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
+ # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
+ model = AutoModelForCausalLM.from_pretrained(model_path,
+ load_in_4bit=True,
+ trust_remote_code=True,
+ optimize_model=True,
+ use_cache=True)
+
+ model = model.to('xpu')
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+
+ # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
+ chat = [
+ { "role": "user", "content": args.prompt },
+ ]
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
+
+ # ipex_llm model needs a warmup, then inference time can be accurate
+ output = model.generate(input_ids,
+ max_new_tokens=args.n_predict)
+ # start inference
+ st = time.time()
+
+ output = model.generate(input_ids,
+ do_sample=False,
+ max_new_tokens=args.n_predict)
+ torch.xpu.synchronize()
+ end = time.time()
+ output_str = tokenizer.decode(output[0], skip_special_tokens=False)
+ print(f'Inference time: {end-st} s')
+ print('-'*20, 'Prompt', '-'*20)
+ print(prompt)
+ print('-'*20, 'Output', '-'*20)
+ print(output_str)
diff --git a/python/llm/example/GPU/PyTorch-Models/Model/minicpm/README.md b/python/llm/example/GPU/PyTorch-Models/Model/minicpm/README.md
new file mode 100644
index 00000000000..bce3215ef91
--- /dev/null
+++ b/python/llm/example/GPU/PyTorch-Models/Model/minicpm/README.md
@@ -0,0 +1,123 @@
+# MiniCPM
+In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
+
+## 0. Requirements
+To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
+
+## Example: Predict Tokens using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
+### 1. Install
+#### 1.1 Installation on Linux
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11
+conda activate llm
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+```
+
+#### 1.2 Installation on Windows
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11 libuv
+conda activate llm
+
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+```
+
+### 2. Configures OneAPI environment variables for Linux
+
+> [!NOTE]
+> Skip this step if you are running on Windows.
+
+This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
+
+```bash
+source /opt/intel/oneapi/setvars.sh
+```
+
+### 3. Runtime Configurations
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
+#### 3.1 Configurations for Linux
+
+
+For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
+
+```bash
+export USE_XETLA=OFF
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+
+
+For Intel Data Center GPU Max Series
+
+```bash
+export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+export ENABLE_SDP_FUSION=1
+```
+> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
+
+
+
+
+For Intel iGPU
+
+```bash
+export SYCL_CACHE_PERSISTENT=1
+export BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+#### 3.2 Configurations for Windows
+
+
+For Intel iGPU
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+set BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+
+
+For Intel Arc™ A-Series Graphics
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+> [!NOTE]
+> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
+### 4. Running examples
+
+```
+python ./generate.py --prompt 'What is AI?'
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+#### Sample Output
+#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
+
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<用户>what is AI?
+-------------------- Output --------------------
+ <用户>what is AI? AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a field of computer science
+```
diff --git a/python/llm/example/GPU/PyTorch-Models/Model/minicpm/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/minicpm/generate.py
new file mode 100644
index 00000000000..b6f9a4cf3ca
--- /dev/null
+++ b/python/llm/example/GPU/PyTorch-Models/Model/minicpm/generate.py
@@ -0,0 +1,81 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+
+from transformers import AutoModelForCausalLM, AutoTokenizer
+from ipex_llm import optimize_model
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
+ help='The huggingface repo id for the MiniCPM model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--prompt', type=str, default="What is AI?",
+ help='Prompt to infer')
+ parser.add_argument('--n-predict', type=int, default=32,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model
+ model = AutoModelForCausalLM.from_pretrained(model_path,
+ trust_remote_code=True,
+ torch_dtype='auto',
+ low_cpu_mem_usage=True,
+ use_cache=True)
+
+ # With only one line to enable IPEX-LLM optimization on model
+ # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
+ # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
+ model = optimize_model(model)
+ model = model.to('xpu')
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+
+ # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
+ chat = [
+ { "role": "user", "content": args.prompt },
+ ]
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
+
+ # ipex_llm model needs a warmup, then inference time can be accurate
+ output = model.generate(input_ids,
+ max_new_tokens=args.n_predict)
+ # start inference
+ st = time.time()
+
+ output = model.generate(input_ids,
+ do_sample=False,
+ max_new_tokens=args.n_predict)
+ torch.xpu.synchronize()
+ end = time.time()
+ output_str = tokenizer.decode(output[0], skip_special_tokens=False)
+ print(f'Inference time: {end-st} s')
+ print('-'*20, 'Prompt', '-'*20)
+ print(prompt)
+ print('-'*20, 'Output', '-'*20)
+ print(output_str)