diff --git a/python/llm/src/ipex_llm/transformers/models/chatglm4.py b/python/llm/src/ipex_llm/transformers/models/chatglm4.py index 86aeaba134f..cf936105774 100644 --- a/python/llm/src/ipex_llm/transformers/models/chatglm4.py +++ b/python/llm/src/ipex_llm/transformers/models/chatglm4.py @@ -47,10 +47,6 @@ def chatglm4_model_forward( ) -> Union[Tuple, BaseModelOutputWithPast]: from ipex_llm.transformers.kv import DynamicFp8Cache use_cache = use_cache if use_cache is not None else self.config.use_cache - # if use_cache and use_quantize_kv_cache( - # self.encoder.layers[0].self_attention.query_key_value, input_ids): - # if not isinstance(past_key_values, DynamicFp8Cache): - # past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) return chatglm4_model_forward_internal( self=self, input_ids=input_ids, @@ -108,25 +104,17 @@ def chatglm4_model_forward_internal( dtype=torch.int64, device=inputs_embeds.device) position_ids = position_ids.repeat(batch_size, 1) - use_fuse_rope = input_ids.device.type == "xpu" - use_fuse_rope = use_fuse_rope and not self.training - - # Rotary positional embeddings - rotary_pos_emb = self.rotary_pos_emb(self.seq_length) - if position_ids is not None: - rotary_pos_emb = rotary_pos_emb[position_ids] - else: - rotary_pos_emb = rotary_pos_emb[None, :seq_length] - if use_fuse_rope: - # Repeat cos sin here, call only once for each token. - # Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two. - # If put this to attension forward, it will generate too many times. - cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1) - cos = cos.squeeze(-1) - sin = sin.squeeze(-1) - cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) - sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) - rotary_pos_emb = (cos, sin) + if getattr(self.rotary_pos_emb, "cached_dtype", None) != inputs_embeds.dtype: + rot_dim = self.rotary_pos_emb.dim + base = 10000 * getattr(self.rotary_pos_emb, "rope_ratio", 1) + # We should generate float inv_freq to avoid overflow, as base is too large. + inv_freq = 1.0 / (base ** (torch.arange(0, rot_dim, 2, + dtype=torch.float, + device=inputs_embeds.device) / rot_dim)) + self.rotary_pos_emb.register_buffer("inv_freq", + inv_freq.to(inputs_embeds.dtype), + persistent=False) + self.rotary_pos_emb.cached = True # `full_attention_mask` is not None only when # `past_key_values` is not None and `seq_length` > 1 @@ -148,7 +136,7 @@ def chatglm4_model_forward_internal( hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( inputs_embeds, causal_mask, - rotary_pos_emb=rotary_pos_emb, + rotary_pos_emb=(self.rotary_pos_emb.inv_freq, position_ids), kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states ) # ipex-llm changes end @@ -172,26 +160,6 @@ def chatglm4_model_forward_internal( ) -def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: - # x: [b, np, sq, hn] - b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3) - rot_dim = rope_cache.shape[-2] * 2 - x, x_pass = x[..., :rot_dim], x[..., rot_dim:] - # truncate to support variable sizes - rope_cache = rope_cache[:, :sq] - xshaped = x.reshape(b, np, sq, rot_dim // 2, 2) - rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2) - x_out2 = torch.stack( - [ - xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], - xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], - ], - -1, - ) - x_out2 = x_out2.flatten(3) - return torch.cat((x_out2, x_pass), dim=-1) - - def chatglm4_attention_forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True ): @@ -209,34 +177,33 @@ def chatglm4_attention_forward( qkv = self.query_key_value(hidden_states) # [bs, q_len, np * 3 * hn] -> [bsz, n_head, seq_len, head_dim] qkv = qkv.view(bsz, q_len, n_head + 2 * n_kv_head, head_dim) + qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([n_head, n_kv_head, - n_kv_head], dim=2) + n_kv_head], dim=1) - kv_seq_len = key_states.shape[1] + kv_seq_len = key_states.shape[2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[2] - if isinstance(rotary_pos_emb, tuple) and len(rotary_pos_emb) == 2: - # use_fuse_rope, see chatglm4_model_forward - cos, sin = rotary_pos_emb - rot_dim = cos.shape[-1] - query_layer_cur = query_states[..., :rot_dim] - key_layer_cur = key_states[..., :rot_dim] - # ipex_llm's apply_rotary_embedding can change the origin storage, - # so query_layer will get the result directly. - torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur) - torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur) - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - elif rotary_pos_emb is not None: - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb) - key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb) + # IPEX-LLM OPT: fuse rope + inv_freq, position_ids = rotary_pos_emb + rot_dim = inv_freq.size(-1) * 2 + if should_use_fuse_rope(hidden_states, rotary_pos_emb[1], self.training): + import xe_addons + xe_addons.rotary_two_inplaced(inv_freq, position_ids, + query_states[..., :rot_dim], key_states[..., :rot_dim]) + else: + idx_theta = torch.outer(position_ids[0].float(), + inv_freq.float()).to(hidden_states.dtype) + idx_theta = idx_theta.unsqueeze(0).unsqueeze(0) + cos = torch.cos(idx_theta).repeat_interleave(2, -1) + sin = torch.sin(idx_theta).repeat_interleave(2, -1) + q_rot, k_rot = apply_rotary_pos_emb(query_states[..., :rot_dim], key_states[..., :rot_dim], + cos, sin, position_ids, "chatglm") + query_states[..., :rot_dim] = q_rot[...] + key_states[..., :rot_dim] = k_rot[...] # IPEX-LLM OPT: kv cache and quantize kv use_quantize_kv = use_quantize_kv_cache(self.query_key_value, hidden_states)