This demo shows how to run Text Spotting models. Text Spotting models allow us to simultaneously detect and recognize text.
NOTE: Only batch size of 1 is supported.
The demo application expects a text spotting model that is split into three parts. Every model part must be in the Intermediate Representation (IR) format.
First model is Mask-RCNN like text detector with the following constraints:
- Two inputs:
im_data
for input image andim_info
for meta-information about the image (actual height, width and scale). - At least five outputs including:
boxes
with absolute bounding box coordinates of the input imagescores
with confidence scores for all bounding boxesclasses
with object class IDs for all bounding boxesraw_masks
with fixed-size segmentation heat maps for all classes of all bounding boxestext_features
with text features which are fed to Text Recognition Head further
Second model is Text Recognition Encoder that takes text_features
as input and produces encoded text
.
Third model is Text Recognition Decoder that takes encoded text
from Text Recognition Encoder ,previous symbol
and hidden state
. On the first step special Start Of Sequence (SOS)
symbol and zero hidden state
are fed to Text Recognition Decoder. The decoder produces symbols distribution
, current hidden state
each step until End Of Sequence (EOS)
symbol is generated.
Examples of valid inputs to specify with a command-line argument -i
are a path to a video file or a numeric ID of a web camera.
The demo workflow is the following:
- The demo application reads frames from the provided input, resizes them to fit into the input image blob of the network (
im_data
). - The
im_info
input blob passes resulting resolution and scale of a pre-processed image to the network to perform inference of Mask-RCNN-like text detector. - The Text Recognition Encoder takes input from the text detector and produces output.
- The Text Recognition Decoder takes output from the Text Recognition Encoder output as input and produces output.
- The demo visualizes the resulting text spotting results. Certain command-line options affect the visualization:
- If you specify
--show_boxes
and--show_scores
arguments, bounding boxes and confidence scores are also shown. - By default, tracking is used to show text instance with the same color throughout the whole video.
It assumes more or less static scene with instances in two frames being a part of the same track if intersection over union of the masks is greater than the 0.5 threshold. To disable tracking, specify the
--no_track
argument.
- If you specify
NOTE: By default, Open Model Zoo demos expect input with BGR channels order. If you trained your model to work with RGB order, you need to manually rearrange the default channels order in the demo application or reconvert your model using the Model Optimizer tool with the
--reverse_input_channels
argument specified. For more information about the argument, refer to When to Reverse Input Channels section of Converting a Model Using General Conversion Parameters.
For demo input image or video files, refer to the section Media Files Available for Demos in the Open Model Zoo Demos Overview.
The list of models supported by the demo is in <omz_dir>/demos/text_spotting_demo/python/models.lst
file.
This file can be used as a parameter for Model Downloader and Converter to download and, if necessary, convert models to OpenVINO Inference Engine format (*.xml + *.bin).
An example of using the Model Downloader:
omz_downloader --list models.lst
An example of using the Model Converter:
omz_converter --list models.lst
- text-spotting-0005-detector
- text-spotting-0005-recognizer-decoder
- text-spotting-0005-recognizer-encoder
NOTE: Refer to the tables Intel's Pre-Trained Models Device Support and Public Pre-Trained Models Device Support for the details on models inference support at different devices.
Run the application with the -h
option to see the following usage message:
usage: text_spotting_demo.py [-h] -m_m "<path>" -m_te "<path>" -m_td "<path>"
-i INPUT [--loop] [-o OUTPUT] [-limit OUTPUT_LIMIT]
[-d "<device>"] [-l "<absolute_path>"] [--delay "<num>"]
[-pt "<num>"] [-a ALPHABET]
[--trd_input_prev_symbol TRD_INPUT_PREV_SYMBOL]
[--trd_input_prev_hidden TRD_INPUT_PREV_HIDDEN]
[--trd_input_encoder_outputs TRD_INPUT_ENCODER_OUTPUTS]
[--trd_output_symbols_distr TRD_OUTPUT_SYMBOLS_DISTR]
[--trd_output_cur_hidden TRD_OUTPUT_CUR_HIDDEN]
[--keep_aspect_ratio] [--no_track]
[--show_scores] [--show_boxes] [-r]
[--no_show] [-u UTILIZATION_MONITORS]
Options:
-h, --help Show this help message and exit.
-m_m "<path>", --mask_rcnn_model "<path>"
Required. Path to an .xml file with a trained Mask-
RCNN model with additional text features output.
-m_te "<path>", --text_enc_model "<path>"
Required. Path to an .xml file with a trained text
recognition model (encoder part).
-m_td "<path>", --text_dec_model "<path>"
Required. Path to an .xml file with a trained text
recognition model (decoder part).
-i INPUT, --input INPUT
Required. An input to process. The input must be a single image,
a folder of images, video file or camera id.
--loop Optional. Enable reading the input in a loop.
-o OUTPUT, --output OUTPUT
Optional. Name of the output file(s) to save.
-limit OUTPUT_LIMIT, --output_limit OUTPUT_LIMIT
Optional. Number of frames to store in output.
If 0 is set, all frames are stored.
-d "<device>", --device "<device>"
Optional. Specify the target device to infer on, i.e. CPU, GPU.
The demo will look for a suitable plugin for device specified
(by default, it is CPU). Please refer to OpenVINO documentation
for the list of devices supported by the model.
-l "<absolute_path>", --cpu_extension "<absolute_path>"
Required for CPU custom layers. Absolute path to a
shared library with the kernels implementation.
--delay "<num>" Optional. Interval in milliseconds of waiting for a
key to be pressed.
-pt "<num>", --prob_threshold "<num>"
Optional. Probability threshold for detections
filtering.
-a ALPHABET, --alphabet ALPHABET
Optional. Alphabet that is used for decoding.
--trd_input_prev_symbol TRD_INPUT_PREV_SYMBOL
Optional. Name of previous symbol input node to text
recognition head decoder part.
--trd_input_prev_hidden TRD_INPUT_PREV_HIDDEN
Optional. Name of previous hidden input node to text
recognition head decoder part.
--trd_input_encoder_outputs TRD_INPUT_ENCODER_OUTPUTS
Optional. Name of encoder outputs input node to text
recognition head decoder part.
--trd_output_symbols_distr TRD_OUTPUT_SYMBOLS_DISTR
Optional. Name of symbols distribution output node
from text recognition head decoder part.
--trd_output_cur_hidden TRD_OUTPUT_CUR_HIDDEN
Optional. Name of current hidden output node from text
recognition head decoder part.
--keep_aspect_ratio Optional. Force image resize to keep aspect ratio.
--no_track Optional. Disable tracking.
--show_scores Optional. Show detection scores.
--show_boxes Optional. Show bounding boxes.
-r, --raw_output_message
Optional. Output inference results raw values.
--no_show Optional. Don't show output
-u UTILIZATION_MONITORS, --utilization_monitors UTILIZATION_MONITORS
Optional. List of monitors to show initially.
Running the application with an empty list of options yields the short version of the usage message and an error message.
To run the demo, please provide paths to the model in the IR format and to an input with images:
python3 text_spotting_demo.py \
-m_m <path_to_model>/text-spotting-0005-detector.xml \
-m_te <path_to_model>/text-spotting-0005-recognizer-encoder.xml \
-m_td <path_to_model>/text-spotting-0005-recognizer-decoder.xml \
-i 0
NOTE: If you provide a single image as an input, the demo processes and renders it quickly, then exits. To continuously visualize inference results on the screen, apply the
loop
option, which enforces processing a single image in a loop.
You can save processed results to a Motion JPEG AVI file or separate JPEG or PNG files using the -o
option:
- To save processed results in an AVI file, specify the name of the output file with
avi
extension, for example:-o output.avi
. - To save processed results as images, specify the template name of the output image file with
jpg
orpng
extension, for example:-o output_%03d.jpg
. The actual file names are constructed from the template at runtime by replacing regular expression%03d
with the frame number, resulting in the following:output_000.jpg
,output_001.jpg
, and so on. To avoid disk space overrun in case of continuous input stream, like camera, you can limit the amount of data stored in the output file(s) with thelimit
option. The default value is 1000. To change it, you can apply the-limit N
option, whereN
is the number of frames to store.
NOTE: Windows* systems may not have the Motion JPEG codec installed by default. If this is the case, you can download OpenCV FFMPEG back end using the PowerShell script provided with the OpenVINO ™ install package and located at
<INSTALL_DIR>/opencv/ffmpeg-download.ps1
. The script should be run with administrative privileges if OpenVINO ™ is installed in a system protected folder (this is a typical case). Alternatively, you can save results as images.
The application uses OpenCV to display resulting text instances. The demo reports
- FPS: average rate of video frame processing (frames per second).
- Latency: average time required to process one frame (from reading the frame to displaying the results). You can use both of these metrics to measure application-level performance.