Notice: This document is a work-in-progress for researchers and implementers.
This document represents the changes to be made in the code of an "honest validator" to implement EIP-4844.
This document is an extension of the Bellatrix -- Honest Validator guide. All behaviors and definitions defined in this document, and documents it extends, carry over unless explicitly noted or overridden.
All terminology, constants, functions, and protocol mechanics defined in the updated Beacon Chain doc of EIP4844 are requisite for this document and used throughout. Please see related Beacon Chain doc before continuing and use them as a reference throughout.
The implementation of is_data_available
is meant to change with later sharding upgrades.
Initially, it requires every verifying actor to retrieve the matching BlobsSidecar
,
and verify the sidecar with verify_blobs
.
Without the sidecar the block may be processed further optimistically,
but MUST NOT be considered valid until a valid BlobsSidecar
has been downloaded.
def is_data_available(slot: Slot, beacon_block_root: Root, kzgs: Sequence[KZGCommitment]):
sidecar = retrieve_blobs_sidecar(slot, beacon_block_root) # implementation dependent, raises an exception if not available
verify_blobs_sidecar(slot, beacon_block_root, kzgs, sidecar)
def verify_blobs_sidecar(slot: Slot, beacon_block_root: Root,
expected_kzgs: Sequence[KZGCommitment], blobs_sidecar: BlobsSidecar):
assert slot == blobs_sidecar.beacon_block_slot
assert beacon_block_root == blobs_sidecar.beacon_block_root
blobs = blobs_sidecar.blobs
assert len(expected_kzgs) == len(blobs)
for kzg, blob in zip(expected_kzgs, blobs):
assert blob_to_kzg(blob) == kzg
All validator responsibilities remain unchanged other than those noted below.
Namely, the blob handling and the addition of BlobsSidecar
.
After retrieving the execution payload from the execution engine as specified in Bellatrix, the blobs are retrieved and processed:
# execution_payload = execution_engine.get_payload(payload_id)
# block.body.execution_payload = execution_payload
# ...
kzgs, blobs = get_blobs(payload_id)
# Optionally sanity-check that the KZG commitments match the versioned hashes in the transactions
assert verify_kzgs_against_transactions(execution_payload.transactions, kzgs)
# Optionally sanity-check that the KZG commitments match the blobs (as produced by the execution engine)
assert len(kzgs) == len(blobs) and [blob_to_kzg(blob) == kzg for blob, kzg in zip(blobs, kzgs)]
# Update the block body
block.body.blob_kzgs = kzgs
The blobs
should be held with the block in preparation of publishing.
Without the blobs
, the published block will effectively be ignored by honest validators.
Note: This API is unstable. get_blobs
and get_payload
may be unified.
Implementers may also retrieve blobs individually per transaction.
Before publishing a prepared beacon block proposal, the corresponding blobs are packaged into a sidecar object for distribution to the network:
blobs_sidecar = BlobsSidecar(
beacon_block_root=hash_tree_root(beacon_block)
beacon_block_slot=beacon_block.slot
shard=0,
blobs=blobs,
)
And then signed:
domain = get_domain(state, DOMAIN_BLOBS_SIDECAR, blobs_sidecar.beacon_block_slot / SLOTS_PER_EPOCH)
signing_root = compute_signing_root(blobs_sidecar, domain)
signature = bls.Sign(privkey, signing_root)
signed_blobs_sidecar = SignedBlobsSidecar(message=blobs_sidecar, signature=signature)
This signed_blobs_sidecar
is then published to the global blobs_sidecar
topic as soon as the beacon_block
is published.
After publishing the sidecar peers on the network may request the sidecar through sync-requests, or a local user may be interested.
The validator MUST hold on to blobs for MIN_EPOCHS_FOR_BLOBS_SIDECARS_REQUESTS
epochs and serve when capable,
to ensure the data-availability of these blobs throughout the network.
After MIN_EPOCHS_FOR_BLOBS_SIDECARS_REQUESTS
nodes MAY prune the blobs and/or stop serving them.