forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
90 lines (79 loc) · 3.1 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
from typing import Dict
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from panns_cnn10.network import CNN10
from paddlehub.env import MODULE_HOME
from paddlehub.module.audio_module import AudioClassifierModule
from paddlehub.module.module import moduleinfo
from paddlehub.utils.log import logger
@moduleinfo(
name="panns_cnn10",
version="1.0.0",
summary="",
author="paddlepaddle",
author_email="",
type="audio/sound_classification",
meta=AudioClassifierModule)
class PANN(nn.Layer):
def __init__(
self,
task: str,
num_class: int = None,
label_map: Dict = None,
load_checkpoint: str = None,
**kwargs,
):
super(PANN, self).__init__()
if label_map:
self.label_map = label_map
self.num_class = len(label_map)
else:
self.num_class = num_class
if task == 'sound-cls':
self.cnn10 = CNN10(
extract_embedding=True, checkpoint=os.path.join(MODULE_HOME, 'panns_cnn10', 'cnn10.pdparams'))
self.dropout = nn.Dropout(0.1)
self.fc = nn.Linear(self.cnn10.emb_size, num_class)
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy()
else:
self.cnn10 = CNN10(
extract_embedding=False, checkpoint=os.path.join(MODULE_HOME, 'panns_cnn10', 'cnn10.pdparams'))
self.task = task
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, feats, labels=None):
# feats: (batch_size, num_frames, num_melbins) -> (batch_size, 1, num_frames, num_melbins)
feats = feats.unsqueeze(1)
if self.task == 'sound-cls':
embeddings = self.cnn10(feats)
embeddings = self.dropout(embeddings)
logits = self.fc(embeddings)
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, {'acc': acc}
return probs
else:
audioset_logits = self.cnn10(feats)
return audioset_logits