forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
259 lines (208 loc) · 9.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from os import listdir, path, makedirs
import platform
import numpy as np
import scipy, cv2, os, sys, argparse
import json, subprocess, random, string
from tqdm import tqdm
from glob import glob
import paddle
from paddle.utils.download import get_weights_path_from_url
from ppgan.faceutils import face_detection
from ppgan.utils import audio
from ppgan.models.generators.wav2lip import Wav2Lip
WAV2LIP_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/wav2lip_hq.pdparams'
mel_step_size = 16
class Wav2LipPredictor:
def __init__(self,
checkpoint_path=None,
static=False,
fps=25,
pads=[0, 10, 0, 0],
face_det_batch_size=16,
wav2lip_batch_size=128,
resize_factor=1,
crop=[0, -1, 0, -1],
box=[-1, -1, -1, -1],
rotate=False,
nosmooth=False,
face_detector='sfd',
face_enhancement=False):
self.img_size = 96
self.checkpoint_path = checkpoint_path
self.static = static
self.fps = fps
self.pads = pads
self.face_det_batch_size = face_det_batch_size
self.wav2lip_batch_size = wav2lip_batch_size
self.resize_factor = resize_factor
self.crop = crop
self.box = box
self.rotate = rotate
self.nosmooth = nosmooth
self.face_detector = face_detector
self.face_enhancement = face_enhancement
if face_enhancement:
from ppgan.faceutils.face_enhancement import FaceEnhancement
self.faceenhancer = FaceEnhancement()
makedirs('./temp', exist_ok=True)
def get_smoothened_boxes(self, boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i:i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(self, images):
detector = face_detection.FaceAlignment(
face_detection.LandmarksType._2D, flip_input=False, face_detector=self.face_detector)
batch_size = self.face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = self.pads
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not self.nosmooth: boxes = self.get_smoothened_boxes(boxes, T=5)
results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def datagen(self, frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if self.box[0] == -1:
if not self.static:
face_det_results = self.face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = self.face_detect([frames[0]])
else:
print('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = self.box
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if self.static else i % len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (self.img_size, self.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= self.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, self.img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, self.img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def run(self, face, audio_seq, output_dir, visualization=True):
if os.path.isfile(face) and path.basename(face).split('.')[1] in ['jpg', 'png', 'jpeg']:
self.static = True
if not os.path.isfile(face):
raise ValueError('--face argument must be a valid path to video/image file')
elif path.basename(face).split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(face)]
fps = self.fps
else:
video_stream = cv2.VideoCapture(face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames...')
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if self.resize_factor > 1:
frame = cv2.resize(frame,
(frame.shape[1] // self.resize_factor, frame.shape[0] // self.resize_factor))
if self.rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = self.crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print("Number of frames available for inference: " + str(len(full_frames)))
if not audio_seq.endswith('.wav'):
print('Extracting raw audio...')
command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio_seq, 'temp/temp.wav')
subprocess.call(command, shell=True)
audio_seq = 'temp/temp.wav'
wav = audio.load_wav(audio_seq, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_chunks = []
mel_idx_multiplier = 80. / fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx:start_idx + mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[:len(mel_chunks)]
batch_size = self.wav2lip_batch_size
gen = self.datagen(full_frames.copy(), mel_chunks)
model = Wav2Lip()
if self.checkpoint_path is None:
model_weights_path = get_weights_path_from_url(WAV2LIP_WEIGHT_URL)
weights = paddle.load(model_weights_path)
else:
weights = paddle.load(self.checkpoint_path)
model.load_dict(weights)
model.eval()
print("Model loaded")
for i, (img_batch, mel_batch, frames, coords) in enumerate(
tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/result.avi', cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = paddle.to_tensor(np.transpose(img_batch, (0, 3, 1, 2))).astype('float32')
mel_batch = paddle.to_tensor(np.transpose(mel_batch, (0, 3, 1, 2))).astype('float32')
with paddle.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
if self.face_enhancement:
p = self.faceenhancer.enhance_from_image(p)
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
os.makedirs(output_dir, exist_ok=True)
if visualization:
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_seq, 'temp/result.avi',
os.path.join(output_dir, 'result.avi'))
subprocess.call(command, shell=platform.system() != 'Windows')