forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
259 lines (233 loc) · 11.9 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
import argparse
import ast
import copy
import os
import time
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from stylepro_artistic.data_feed import reader
from stylepro_artistic.processor import base64_to_cv2
from stylepro_artistic.processor import cv2_to_base64
from stylepro_artistic.processor import fr
from stylepro_artistic.processor import postprocess
import paddlehub as hub
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
# coding=utf-8
@moduleinfo(
name="stylepro_artistic",
version="1.0.3",
type="cv/style_transfer",
summary="StylePro Artistic is an algorithm for Arbitrary image style, which is parameter-free, fast yet effective.",
author="baidu-bdl",
author_email="")
class StyleProjection(hub.Module):
def _initialize(self):
self.pretrained_encoder_net = os.path.join(self.directory, "style_projection_enc")
self.pretrained_decoder_net = os.path.join(self.directory, "style_projection_dec")
self._set_config()
def _set_config(self):
"""
predictor config setting
"""
# encoder
cpu_config_enc = Config(self.pretrained_encoder_net)
cpu_config_enc.disable_glog_info()
cpu_config_enc.disable_gpu()
self.cpu_predictor_enc = create_predictor(cpu_config_enc)
# decoder
cpu_config_dec = Config(self.pretrained_decoder_net)
cpu_config_dec.disable_glog_info()
cpu_config_dec.disable_gpu()
self.cpu_predictor_dec = create_predictor(cpu_config_dec)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
# encoder
gpu_config_enc = Config(self.pretrained_encoder_net)
gpu_config_enc.disable_glog_info()
gpu_config_enc.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor_enc = create_predictor(gpu_config_enc)
# decoder
gpu_config_dec = Config(self.pretrained_decoder_net)
gpu_config_dec.disable_glog_info()
gpu_config_dec.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor_dec = create_predictor(gpu_config_dec)
def style_transfer(self,
images=None,
paths=None,
alpha=1,
use_gpu=False,
output_dir='transfer_result',
visualization=False):
"""
API for image style transfer.
Args:
images (list): list of dict objects, each dict contains key:
content(str): value is a numpy.ndarry with shape [H, W, C], content data.
styles(str): value is a list of numpy.ndarray with shape [H, W, C], styles data.
weights(str, optional): value is the interpolation weights correspond to styles.
paths (list): list of dict objects, each dict contains key:
content(str): value is the path to content.
styles(str): value is the paths to styles.
weights(str, optional): value is the interpolation weights correspond to styles.
alpha (float): The weight that controls the degree of stylization. Should be between 0 and 1.
use_gpu (bool): whether to use gpu.
output_dir (str): the path to store output images.
visualization (bool): whether to save image or not.
Returns:
im_output (list[dict()]): list of output images and save path of images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
predictor_enc = self.gpu_predictor_enc if use_gpu else self.cpu_predictor_enc
input_names_enc = predictor_enc.get_input_names()
input_handle_enc = predictor_enc.get_input_handle(input_names_enc[0])
output_names_enc = predictor_enc.get_output_names()
output_handle_enc = predictor_enc.get_output_handle(output_names_enc[0])
predictor_dec = self.gpu_predictor_dec if use_gpu else self.cpu_predictor_dec
input_names_dec = predictor_dec.get_input_names()
input_handle_dec = predictor_dec.get_input_handle(input_names_dec[0])
output_names_dec = predictor_dec.get_output_names()
output_handle_dec = predictor_dec.get_output_handle(output_names_dec[0])
im_output = []
for component, w, h in reader(images, paths):
input_handle_enc.copy_from_cpu(component['content_arr'])
predictor_enc.run()
content_feats = output_handle_enc.copy_to_cpu()
accumulate = np.zeros((3, 512, 512))
for idx, style_arr in enumerate(component['styles_arr_list']):
# encode
input_handle_enc.copy_from_cpu(style_arr)
predictor_enc.run()
style_feats = output_handle_enc.copy_to_cpu()
fr_feats = fr(content_feats, style_feats, alpha)
# decode
input_handle_dec.copy_from_cpu(fr_feats)
predictor_dec.run()
predict_outputs = output_handle_dec.copy_to_cpu()
# interpolation
accumulate += predict_outputs[0] * component['style_interpolation_weights'][idx]
# postprocess
save_im_name = 'ndarray_{}.jpg'.format(time.time())
result = postprocess(accumulate, output_dir, save_im_name, visualization, size=(w, h))
im_output.append(result)
return im_output
def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
encode_dirname = os.path.join(dirname, 'encoder')
decode_dirname = os.path.join(dirname, 'decoder')
self._save_encode_model(encode_dirname, model_filename, params_filename, combined)
self._save_decode_model(decode_dirname, model_filename, params_filename, combined)
def _save_encode_model(self, dirname, model_filename=None, params_filename=None, combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = paddle.CPUPlace()
exe = paddle.Executor(place)
encode_program, encode_feeded_var_names, encode_target_vars = paddle.static.load_inference_model(
dirname=self.pretrained_encoder_net, executor=exe)
paddle.static.save_inference_model(dirname=dirname,
main_program=encode_program,
executor=exe,
feeded_var_names=encode_feeded_var_names,
target_vars=encode_target_vars,
model_filename=model_filename,
params_filename=params_filename)
def _save_decode_model(self, dirname, model_filename=None, params_filename=None, combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = paddle.CPUPlace()
exe = paddle.Executor(place)
decode_program, decode_feeded_var_names, decode_target_vars = paddle.static.load_inference_model(
dirname=self.pretrained_decoder_net, executor=exe)
paddle.static.save_inference_model(dirname=dirname,
main_program=decode_program,
executor=exe,
feeded_var_names=decode_feeded_var_names,
target_vars=decode_target_vars,
model_filename=model_filename,
params_filename=params_filename)
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = copy.deepcopy(images)
for image in images_decode:
image['content'] = base64_to_cv2(image['content'])
image['styles'] = [base64_to_cv2(style) for style in image['styles']]
results = self.style_transfer(images_decode, **kwargs)
results = [{'data': cv2_to_base64(result['data'])} for result in results]
return results
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
if args.weights is None:
paths = [{'content': args.content, 'styles': args.styles.split(',')}]
else:
paths = [{'content': args.content, 'styles': args.styles.split(','), 'weights': list(args.weights)}]
results = self.style_transfer(paths=paths,
alpha=args.alpha,
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=True)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='transfer_result',
help="The directory to save output images.")
self.arg_config_group.add_argument('--visualization',
type=ast.literal_eval,
default=True,
help="whether to save output as images.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--content', type=str, help="path to content.")
self.arg_input_group.add_argument('--styles', type=str, help="path to styles.")
self.arg_input_group.add_argument('--weights',
type=ast.literal_eval,
default=None,
help="interpolation weights of styles.")
self.arg_config_group.add_argument('--alpha',
type=ast.literal_eval,
default=1,
help="The parameter to control the tranform degree.")