forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
213 lines (189 loc) · 8.45 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import ast
import argparse
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddlehub.module.module import moduleinfo, runnable
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.common.paddle_helper import add_vars_prefix
from paddlehub.io.parser import txt_parser
from darknet53_imagenet.darknet import DarkNet
from darknet53_imagenet.processor import load_label_info
from darknet53_imagenet.data_feed import test_reader
@moduleinfo(
name="darknet53_imagenet",
version="1.1.0",
type="cv/classification",
summary="DarkNet53 is a image classfication model trained with ImageNet-2012 dataset.",
author="paddlepaddle",
author_email="[email protected]")
class DarkNet53(hub.Module):
def _initialize(self):
self.default_pretrained_model_path = os.path.join(self.directory, "darknet53_model")
self.label_names = load_label_info(os.path.join(self.directory, "label_file.txt"))
self.infer_prog = None
self.pred_out = None
self._set_config()
def get_expected_image_width(self):
return 224
def get_expected_image_height(self):
return 224
def get_pretrained_images_mean(self):
im_mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3)
return im_mean
def get_pretrained_images_std(self):
im_std = np.array([0.229, 0.224, 0.225]).reshape(1, 3)
return im_std
def _set_config(self):
"""
predictor config setting
"""
cpu_config = AnalysisConfig(self.default_pretrained_model_path)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_paddle_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = AnalysisConfig(self.default_pretrained_model_path)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0)
self.gpu_predictor = create_paddle_predictor(gpu_config)
def context(self, input_image=None, trainable=True, pretrained=True, param_prefix='', get_prediction=False):
"""Distill the Head Features, so as to perform transfer learning.
:param input_image: image tensor.
:type input_image: <class 'paddle.fluid.framework.Variable'>
:param trainable: whether to set parameters trainable.
:type trainable: bool
:param pretrained: whether to load default pretrained model.
:type pretrained: bool
:param param_prefix: the prefix of parameters in yolo_head and backbone
:type param_prefix: str
:param get_prediction: whether to get prediction,
if True, outputs is {'bbox_out': bbox_out},
if False, outputs is {'head_features': head_features}.
:type get_prediction: bool
"""
context_prog = input_image.block.program if input_image else fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(context_prog, startup_program):
image = input_image if input_image else fluid.data(
name='image', shape=[-1, 3, 224, 224], dtype='float32', lod_level=0)
backbone = DarkNet(get_prediction=get_prediction)
out = backbone(image)
inputs = {'image': image}
if get_prediction:
outputs = {'pred_out': out}
else:
outputs = {'body_feats': out}
place = fluid.CPUPlace()
exe = fluid.Executor(place)
if pretrained:
def _if_exist(var):
return os.path.exists(os.path.join(self.default_pretrained_model_path, var.name))
if not param_prefix:
fluid.io.load_vars(
exe, self.default_pretrained_model_path, main_program=context_prog, predicate=_if_exist)
else:
exe.run(startup_program)
return inputs, outputs, context_prog
def classification(self, paths=None, images=None, use_gpu=False, batch_size=1, top_k=2):
"""API of Classification.
:param paths: the path of images.
:type paths: list, each element is correspond to the path of an image.
:param images: data of images, [N, H, W, C]
:type images: numpy.ndarray
:param use_gpu: whether to use gpu or not.
:type use_gpu: bool
:param batch_size: batch size.
:type batch_size: int
:param top_k : top k
:type top_k : int
"""
if self.infer_prog is None:
inputs, outputs, self.infer_prog = self.context(trainable=False, pretrained=True, get_prediction=True)
self.infer_prog = self.infer_prog.clone(for_test=True)
self.pred_out = outputs['pred_out']
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
all_images = []
paths = paths if paths else []
for yield_data in test_reader(paths, images):
all_images.append(yield_data)
images_num = len(all_images)
loop_num = int(np.ceil(images_num / batch_size))
res_list = []
top_k = max(min(top_k, 1000), 1)
for iter_id in range(loop_num):
batch_data = []
handle_id = iter_id * batch_size
for image_id in range(batch_size):
try:
batch_data.append(all_images[handle_id + image_id])
except:
pass
batch_data = np.array(batch_data).astype('float32')
data_tensor = PaddleTensor(batch_data.copy())
if use_gpu:
result = self.gpu_predictor.run([data_tensor])
else:
result = self.cpu_predictor.run([data_tensor])
for i, res in enumerate(result[0].as_ndarray()):
res_dict = {}
pred_label = np.argsort(res)[::-1][:top_k]
for k in pred_label:
class_name = self.label_names[int(k)].split(',')[0]
max_prob = res[k]
res_dict[class_name] = max_prob
res_list.append(res_dict)
return res_list
def add_module_config_arg(self):
"""
Add the command config options
"""
self.arg_config_group.add_argument(
'--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not")
self.arg_config_group.add_argument('--batch_size', type=int, default=1, help="batch size for prediction")
def add_module_input_arg(self):
"""
Add the command input options
"""
self.arg_input_group.add_argument('--input_path', type=str, default=None, help="input data")
self.arg_input_group.add_argument('--input_file', type=str, default=None, help="file contain input data")
def check_input_data(self, args):
input_data = []
if args.input_path:
input_data = [args.input_path]
elif args.input_file:
if not os.path.exists(args.input_file):
raise RuntimeError("File %s is not exist." % args.input_file)
else:
input_data = txt_parser.parse(args.input_file, use_strip=True)
return input_data
@runnable
def run_cmd(self, argvs):
self.parser = argparse.ArgumentParser(
description="Run the {}".format(self.name),
prog="hub run {}".format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
input_data = self.check_input_data(args)
if len(input_data) == 0:
self.parser.print_help()
exit(1)
else:
for image_path in input_data:
if not os.path.exists(image_path):
raise RuntimeError("File %s or %s is not exist." % image_path)
return self.classification(paths=input_data, use_gpu=args.use_gpu, batch_size=args.batch_size)