forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
165 lines (141 loc) · 6.12 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import absolute_import
from __future__ import division
import argparse
import ast
import os
import numpy as np
from paddle.inference import Config
from paddle.inference import create_predictor
from .data_feed import reader
from .processor import base64_to_cv2
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(
name="res2net101_vd_26w_4s_imagenet",
type="CV/image_classification",
author="paddlepaddle",
author_email="[email protected]",
summary="res2net101_vd_26w_4s is a image classfication model, this module is trained with imagenet datasets.",
version="1.1.0")
class Res2Net101vd26w4sImagenet:
def __init__(self):
self.default_pretrained_model_path = os.path.join(self.directory, "res2net101_vd_26w_4s_imagenet_model",
"model")
label_file = os.path.join(self.directory, "label_list.txt")
with open(label_file, 'r', encoding='utf-8') as file:
self.label_list = file.read().split("\n")[:-1]
self.predictor_set = False
def get_expected_image_width(self):
return 224
def get_expected_image_height(self):
return 224
def get_pretrained_images_mean(self):
im_mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3)
return im_mean
def get_pretrained_images_std(self):
im_std = np.array([0.229, 0.224, 0.225]).reshape(1, 3)
return im_std
def _set_config(self):
"""
predictor config setting
"""
model = self.default_pretrained_model_path + '.pdmodel'
params = self.default_pretrained_model_path + '.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_predictor(gpu_config)
def classification(self, images=None, paths=None, batch_size=1, use_gpu=False, top_k=1):
"""
API for image classification.
Args:
images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR.
paths (list[str]): The paths of images.
batch_size (int): batch size.
use_gpu (bool): Whether to use gpu.
top_k (int): Return top k results.
Returns:
res (list[dict]): The classfication results.
"""
if not self.predictor_set:
self._set_config()
self.predictor_set = True
all_data = list()
for yield_data in reader(images, paths):
all_data.append(yield_data)
total_num = len(all_data)
loop_num = int(np.ceil(total_num / batch_size))
res = list()
for iter_id in range(loop_num):
batch_data = list()
handle_id = iter_id * batch_size
for image_id in range(batch_size):
try:
batch_data.append(all_data[handle_id + image_id])
except:
pass
# feed batch image
batch_image = np.array([data['image'] for data in batch_data])
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(batch_image.copy())
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
out = postprocess(data_out=output_handle.copy_to_cpu(), label_list=self.label_list, top_k=top_k)
res += out
return res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.classification(images=images_decode, **kwargs)
return results
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.classification(paths=[args.input_path], batch_size=args.batch_size, use_gpu=args.use_gpu)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not.")
self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
self.arg_config_group.add_argument('--top_k', type=ast.literal_eval, default=1, help="Return top k results.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")