forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
200 lines (175 loc) · 7.04 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt152."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(
name="resnext152_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext152_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt152_64x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt152_64x4d, self).__init__()
self.layers = 152
self.cardinality = 64
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext152_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y