forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
196 lines (164 loc) · 7.19 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from math import ceil
from typing import Union
import paddle
import paddle.nn as nn
import numpy as np
import paddlehub.vision.transforms as T
from paddle import ParamAttr
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
def conv_bn_act(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1, active=True, relu6=False):
out.append(nn.Conv2D(in_channels, channels, kernel, stride, pad, groups=num_group, bias_attr=False))
out.append(nn.BatchNorm2D(channels))
if active:
out.append(nn.ReLU6() if relu6 else nn.ReLU())
def conv_bn_swish(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1):
out.append(nn.Conv2D(in_channels, channels, kernel, stride, pad, groups=num_group, bias_attr=False))
out.append(nn.BatchNorm2D(channels))
out.append(nn.Swish())
class SE(nn.Layer):
def __init__(self, in_channels, channels, se_ratio=12):
super(SE, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Conv2D(in_channels, channels // se_ratio, kernel_size=1, padding=0),
nn.BatchNorm2D(channels // se_ratio), nn.ReLU(),
nn.Conv2D(channels // se_ratio, channels, kernel_size=1, padding=0), nn.Sigmoid())
def forward(self, x):
y = self.avg_pool(x)
y = self.fc(y)
return x * y
class LinearBottleneck(nn.Layer):
def __init__(self, in_channels, channels, t, stride, use_se=True, se_ratio=12, **kwargs):
super(LinearBottleneck, self).__init__(**kwargs)
self.use_shortcut = stride == 1 and in_channels <= channels
self.in_channels = in_channels
self.out_channels = channels
out = []
if t != 1:
dw_channels = in_channels * t
conv_bn_swish(out, in_channels=in_channels, channels=dw_channels)
else:
dw_channels = in_channels
conv_bn_act(
out,
in_channels=dw_channels,
channels=dw_channels,
kernel=3,
stride=stride,
pad=1,
num_group=dw_channels,
active=False)
if use_se:
out.append(SE(dw_channels, dw_channels, se_ratio))
out.append(nn.ReLU6())
conv_bn_act(out, in_channels=dw_channels, channels=channels, active=False, relu6=True)
self.out = nn.Sequential(*out)
def forward(self, x):
out = self.out(x)
if self.use_shortcut:
out[:, 0:self.in_channels] += x
return out
@moduleinfo(
name="rexnet_1_5_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="rexnet_1_5_imagenet is a classification model, "
"this module is trained with Imagenet dataset.",
version="1.0.0",
meta=ImageClassifierModule)
class ReXNetV1(nn.Layer):
def __init__(self,
label_list: list = None,
load_checkpoint: str = None,
input_ch=16,
final_ch=180,
width_mult=1.5,
depth_mult=1.0,
class_dim=1000,
use_se=True,
se_ratio=12,
dropout_ratio=0.2,
bn_momentum=0.9):
super(ReXNetV1, self).__init__()
if label_list is not None:
self.labels = label_list
class_dim = len(self.labels)
else:
label_list = []
label_file = os.path.join(self.directory, 'label_list.txt')
files = open(label_file)
for line in files.readlines():
line = line.strip('\n')
label_list.append(line)
self.labels = label_list
class_dim = len(self.labels)
layers = [1, 2, 2, 3, 3, 5]
strides = [1, 2, 2, 2, 1, 2]
use_ses = [False, False, True, True, True, True]
layers = [ceil(element * depth_mult) for element in layers]
strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
if use_se:
use_ses = sum([[element] * layers[idx] for idx, element in enumerate(use_ses)], [])
else:
use_ses = [False] * sum(layers[:])
ts = [1] * layers[0] + [6] * sum(layers[1:])
self.depth = sum(layers[:]) * 3
stem_channel = 32 / width_mult if width_mult < 1.0 else 32
inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch
features = []
in_channels_group = []
channels_group = []
# The following channel configuration is a simple instance to make each layer become an expand layer.
for i in range(self.depth // 3):
if i == 0:
in_channels_group.append(int(round(stem_channel * width_mult)))
channels_group.append(int(round(inplanes * width_mult)))
else:
in_channels_group.append(int(round(inplanes * width_mult)))
inplanes += final_ch / (self.depth // 3 * 1.0)
channels_group.append(int(round(inplanes * width_mult)))
conv_bn_swish(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=2, pad=1)
for block_idx, (in_c, c, t, s, se) in enumerate(zip(in_channels_group, channels_group, ts, strides, use_ses)):
features.append(LinearBottleneck(in_channels=in_c, channels=c, t=t, stride=s, use_se=se, se_ratio=se_ratio))
pen_channels = int(1280 * width_mult)
conv_bn_swish(features, c, pen_channels)
features.append(nn.AdaptiveAvgPool2D(1))
self.features = nn.Sequential(*features)
self.output = nn.Sequential(nn.Dropout(dropout_ratio), nn.Conv2D(pen_channels, class_dim, 1, bias_attr=True))
if load_checkpoint is not None:
self.model_dict = paddle.load(load_checkpoint)
self.set_dict(self.model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'model.pdparams')
self.model_dict = paddle.load(checkpoint)
self.set_dict(self.model_dict)
print("load pretrained checkpoint success")
def transforms(self, images: Union[str, np.ndarray]):
transforms = T.Compose([
T.Resize((256, 256)),
T.CenterCrop(224),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
],
to_rgb=True)
return transforms(images).astype('float32')
def forward(self, x):
feat = self.features(x)
x = self.output(feat).squeeze(axis=-1).squeeze(axis=-1)
return x, feat