forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
319 lines (271 loc) · 12.3 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
bn_name = "bn_" + name
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class SeparableConv(nn.Layer):
"""Basic separable conv layer, it contains pointwise conv and depthwise conv."""
def __init__(self, input_channels: int, output_channels: int, stride: int = 1, name: str = None):
super(SeparableConv, self).__init__()
self._pointwise_conv = ConvBNLayer(input_channels, output_channels, 1, name=name + "_sep")
self._depthwise_conv = ConvBNLayer(
output_channels, output_channels, 3, stride=stride, groups=output_channels, name=name + "_dw")
def forward(self, inputs: paddle.Tensor):
x = self._pointwise_conv(inputs)
x = self._depthwise_conv(x)
return x
class EntryFlowBottleneckBlock(nn.Layer):
"""Basic entry flow bottleneck block for Xception."""
def __init__(self,
input_channels: int,
output_channels: int,
stride: int = 2,
name: str = None,
relu_first: bool = False):
super(EntryFlowBottleneckBlock, self).__init__()
self.relu_first = relu_first
self._short = Conv2d(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=1,
stride=stride,
padding=0,
weight_attr=ParamAttr(name + "_branch1_weights"),
bias_attr=False)
self._conv1 = SeparableConv(input_channels, output_channels, stride=1, name=name + "_branch2a_weights")
self._conv2 = SeparableConv(output_channels, output_channels, stride=1, name=name + "_branch2b_weights")
self._pool = MaxPool2d(kernel_size=3, stride=stride, padding=1)
def forward(self, inputs: paddle.Tensor):
conv0 = inputs
short = self._short(inputs)
if self.relu_first:
conv0 = F.relu(conv0)
conv1 = self._conv1(conv0)
conv2 = F.relu(conv1)
conv2 = self._conv2(conv2)
pool = self._pool(conv2)
return paddle.elementwise_add(x=short, y=pool)
class EntryFlow(nn.Layer):
"""Entry flow for Xception."""
def __init__(self, block_num: int = 3):
super(EntryFlow, self).__init__()
name = "entry_flow"
self.block_num = block_num
self._conv1 = ConvBNLayer(3, 32, 3, stride=2, act="relu", name=name + "_conv1")
self._conv2 = ConvBNLayer(32, 64, 3, act="relu", name=name + "_conv2")
if block_num == 3:
self._conv_0 = EntryFlowBottleneckBlock(64, 128, stride=2, name=name + "_0", relu_first=False)
self._conv_1 = EntryFlowBottleneckBlock(128, 256, stride=2, name=name + "_1", relu_first=True)
self._conv_2 = EntryFlowBottleneckBlock(256, 728, stride=2, name=name + "_2", relu_first=True)
elif block_num == 5:
self._conv_0 = EntryFlowBottleneckBlock(64, 128, stride=2, name=name + "_0", relu_first=False)
self._conv_1 = EntryFlowBottleneckBlock(128, 256, stride=1, name=name + "_1", relu_first=True)
self._conv_2 = EntryFlowBottleneckBlock(256, 256, stride=2, name=name + "_2", relu_first=True)
self._conv_3 = EntryFlowBottleneckBlock(256, 728, stride=1, name=name + "_3", relu_first=True)
self._conv_4 = EntryFlowBottleneckBlock(728, 728, stride=2, name=name + "_4", relu_first=True)
else:
sys.exit(-1)
def forward(self, inputs: paddle.Tensor):
x = self._conv1(inputs)
x = self._conv2(x)
if self.block_num == 3:
x = self._conv_0(x)
x = self._conv_1(x)
x = self._conv_2(x)
elif self.block_num == 5:
x = self._conv_0(x)
x = self._conv_1(x)
x = self._conv_2(x)
x = self._conv_3(x)
x = self._conv_4(x)
return x
class MiddleFlowBottleneckBlock(nn.Layer):
"""Basic middle flow bottleneck block for Xception."""
def __init__(self, input_channels: int, output_channels: int, name: str):
super(MiddleFlowBottleneckBlock, self).__init__()
self._conv_0 = SeparableConv(input_channels, output_channels, stride=1, name=name + "_branch2a_weights")
self._conv_1 = SeparableConv(output_channels, output_channels, stride=1, name=name + "_branch2b_weights")
self._conv_2 = SeparableConv(output_channels, output_channels, stride=1, name=name + "_branch2c_weights")
def forward(self, inputs: paddle.Tensor):
conv0 = F.relu(inputs)
conv0 = self._conv_0(conv0)
conv1 = F.relu(conv0)
conv1 = self._conv_1(conv1)
conv2 = F.relu(conv1)
conv2 = self._conv_2(conv2)
return paddle.elementwise_add(x=inputs, y=conv2)
class MiddleFlow(nn.Layer):
"""Middle flow for Xception."""
def __init__(self, block_num: int = 8):
super(MiddleFlow, self).__init__()
self.block_num = block_num
self._conv_0 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_0")
self._conv_1 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_1")
self._conv_2 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_2")
self._conv_3 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_3")
self._conv_4 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_4")
self._conv_5 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_5")
self._conv_6 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_6")
self._conv_7 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_7")
if block_num == 16:
self._conv_8 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_8")
self._conv_9 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_9")
self._conv_10 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_10")
self._conv_11 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_11")
self._conv_12 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_12")
self._conv_13 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_13")
self._conv_14 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_14")
self._conv_15 = MiddleFlowBottleneckBlock(728, 728, name="middle_flow_15")
def forward(self, inputs: paddle.Tensor):
x = self._conv_0(inputs)
x = self._conv_1(x)
x = self._conv_2(x)
x = self._conv_3(x)
x = self._conv_4(x)
x = self._conv_5(x)
x = self._conv_6(x)
x = self._conv_7(x)
if self.block_num == 16:
x = self._conv_8(x)
x = self._conv_9(x)
x = self._conv_10(x)
x = self._conv_11(x)
x = self._conv_12(x)
x = self._conv_13(x)
x = self._conv_14(x)
x = self._conv_15(x)
return x
class ExitFlowBottleneckBlock(nn.Layer):
"""Basic exit flow bottleneck block for Xception."""
def __init__(self, input_channels: int, output_channels1: int, output_channels2: int, name: str):
super(ExitFlowBottleneckBlock, self).__init__()
self._short = Conv2d(
in_channels=input_channels,
out_channels=output_channels2,
kernel_size=1,
stride=2,
padding=0,
weight_attr=ParamAttr(name + "_branch1_weights"),
bias_attr=False)
self._conv_1 = SeparableConv(input_channels, output_channels1, stride=1, name=name + "_branch2a_weights")
self._conv_2 = SeparableConv(output_channels1, output_channels2, stride=1, name=name + "_branch2b_weights")
self._pool = MaxPool2d(kernel_size=3, stride=2, padding=1)
def forward(self, inputs: paddle.Tensor):
short = self._short(inputs)
conv0 = F.relu(inputs)
conv1 = self._conv_1(conv0)
conv2 = F.relu(conv1)
conv2 = self._conv_2(conv2)
pool = self._pool(conv2)
return paddle.elementwise_add(x=short, y=pool)
class ExitFlow(nn.Layer):
def __init__(self, class_dim: int):
super(ExitFlow, self).__init__()
name = "exit_flow"
self._conv_0 = ExitFlowBottleneckBlock(728, 728, 1024, name=name + "_1")
self._conv_1 = SeparableConv(1024, 1536, stride=1, name=name + "_2")
self._conv_2 = SeparableConv(1536, 2048, stride=1, name=name + "_3")
self._pool = AdaptiveAvgPool2d(1)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self._out = Linear(
2048,
class_dim,
weight_attr=ParamAttr(name="fc_weights", initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs: paddle.Tensor):
conv0 = self._conv_0(inputs)
conv1 = self._conv_1(conv0)
conv1 = F.relu(conv1)
conv2 = self._conv_2(conv1)
conv2 = F.relu(conv2)
pool = self._pool(conv2)
pool = paddle.reshape(pool, [0, -1])
out = self._out(pool)
return out
@moduleinfo(
name="xception71_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="Xception71_imagenet is a classification model, "
"this module is trained with Imagenet dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class Xception71(nn.Layer):
def __init__(self, class_dim=1000, load_checkpoint: str = None):
super(Xception71, self).__init__()
self.entry_flow_block_num = 5
self.middle_flow_block_num = 16
self._entry_flow = EntryFlow(self.entry_flow_block_num)
self._middle_flow = MiddleFlow(self.middle_flow_block_num)
self._exit_flow = ExitFlow(class_dim)
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'xception71_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/xception71_imagenet.pdparams -O'
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs):
x = self._entry_flow(inputs)
x = self._middle_flow(x)
x = self._exit_flow(x)
return x