forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
processor.py
125 lines (104 loc) · 3.95 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import base64
import cv2
import numpy as np
from PIL import ImageDraw
__all__ = ['base64_to_cv2', 'postprocess']
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
def check_dir(dir_path):
"""
Create directory to save processed image.
Args:
dir_path (str): directory path to save images.
"""
if not os.path.exists(dir_path):
os.makedirs(dir_path)
elif os.path.isfile(dir_path):
os.remove(dir_path)
os.makedirs(dir_path)
def get_save_image_name(img, org_im_path, output_dir):
"""
Get save image name.
"""
# name prefix of original image
org_im_name = os.path.split(org_im_path)[-1]
im_prefix = os.path.splitext(org_im_name)[0]
# extension
if img.mode == 'RGBA':
ext = '.png'
else:
ext = '.jpg'
# save image path
save_im_path = os.path.join(output_dir, im_prefix + ext)
if os.path.exists(save_im_path):
save_im_path = os.path.join(output_dir, im_prefix + 'time={}'.format(int(time.time())) + ext)
return save_im_path
def draw_bboxes(image, bboxes, org_im_path, output_dir):
"""
Draw bounding boxes on image.
Args:
bboxes (np.array): bounding boxes.
"""
draw = ImageDraw.Draw(image)
for i in range(len(bboxes)):
xmin, ymin, xmax, ymax = bboxes[i]
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=4, fill='red')
save_name = get_save_image_name(image, org_im_path, output_dir)
image.save(save_name)
def postprocess(data_out, org_im, org_im_path, org_im_width, org_im_height, output_dir, visualization, score_thresh):
"""
Postprocess output of network. one image at a time.
Args:
data_out (numpy.ndarray): output of network.
org_im: (PIL.Image object): original image.
org_im_path (str): path of original image.
org_im_width (int): width of original image.
org_im_height (int): height of original image.
output_dir (str): output directory to store image.
visualization (bool): whether to save image or not.
Returns:
output (dict): keys are 'data' and 'path', the correspoding values are:
data (list[dict]): 5 keys, where
'left', 'top', 'right', 'bottom' are the coordinate of detection bounding box,
'confidence' is the confidence this bbox.
path (str): The path of original image.
"""
output = dict()
output['data'] = list()
output['path'] = org_im_path
if data_out.shape[0] == 0:
print("No face detected in {}".format(org_im_path))
else:
det_conf = data_out[:, 1]
det_xmin = org_im_width * data_out[:, 2]
det_ymin = org_im_height * data_out[:, 3]
det_xmax = org_im_width * data_out[:, 4]
det_ymax = org_im_height * data_out[:, 5]
dets = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
keep_index = np.where(dets[:, 4] >= score_thresh)[0]
dets = dets[keep_index, :]
if dets.shape[0] == 0:
print("No face detected in {}".format(org_im_path))
else:
for detect_face in dets:
dt_i = dict()
dt_i['left'] = float(detect_face[0])
dt_i['top'] = float(detect_face[1])
dt_i['right'] = float(detect_face[2])
dt_i['bottom'] = float(detect_face[3])
dt_i['confidence'] = float(detect_face[4])
output['data'].append(dt_i)
if visualization:
check_dir(output_dir)
draw_bboxes(org_im, dets[:, 0:4], org_im_path, output_dir)
return output