forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
261 lines (218 loc) · 11.2 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import copy
import argparse
from typing import Union
from collections import OrderedDict
import cv2
import paddle
import paddle.nn as nn
import numpy as np
from paddlehub.module.module import moduleinfo, runnable, serving
import paddlehub.vision.transforms as T
from . import processor as P
@moduleinfo(
name="openpose_body_estimation",
type="CV/image_editing",
author="paddlepaddle",
author_email="",
summary="Openpose_body_estimation is a body pose estimation model based on Realtime Multi-Person 2D Pose \
Estimation using Part Affinity Fields.",
version="1.1.0")
class BodyPoseModel(nn.Layer):
"""
BodyposeModel
Args:
load_checkpoint(str): Checkpoint save path, default is None.
"""
def __init__(self, load_checkpoint: str = None):
super(BodyPoseModel, self).__init__()
self.resize_func = P.ResizeScaling()
self.norm_func = T.Normalize(std=[1, 1, 1])
self.pad_func = P.PadDownRight()
self.remove_pad = P.RemovePadding()
self.get_peak = P.GetPeak()
self.get_connection = P.Connection()
self.get_candidate = P.Candidate()
self.draw_pose = P.DrawPose()
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', \
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', \
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', \
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
blocks = {}
block0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2,
0]),
('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]),
('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]),
('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]),
('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]),
('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]),
('conv4_3_CPM', [512, 256, 3, 1, 1]), ('conv4_4_CPM', [256, 128, 3, 1, 1])])
block1_1 = OrderedDict([('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])])
block1_2 = OrderedDict([('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])])
blocks['block1_1'] = block1_1
blocks['block1_2'] = block1_2
self.model0 = self.make_layers(block0, no_relu_layers)
for i in range(2, 7):
blocks['block%d_1' % i] = OrderedDict([('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])])
blocks['block%d_2' % i] = OrderedDict([('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])])
for k in blocks.keys():
blocks[k] = self.make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks['block1_1']
self.model2_1 = blocks['block2_1']
self.model3_1 = blocks['block3_1']
self.model4_1 = blocks['block4_1']
self.model5_1 = blocks['block5_1']
self.model6_1 = blocks['block6_1']
self.model1_2 = blocks['block1_2']
self.model2_2 = blocks['block2_2']
self.model3_2 = blocks['block3_2']
self.model4_2 = blocks['block4_2']
self.model5_2 = blocks['block5_2']
self.model6_2 = blocks['block6_2']
if load_checkpoint is not None:
self.model_dict = paddle.load(load_checkpoint)
self.set_dict(self.model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'openpose_body.pdparams')
self.model_dict = paddle.load(checkpoint)
self.set_dict(self.model_dict)
print("load pretrained checkpoint success")
def make_layers(self, block: dict, no_relu_layers: list):
layers = []
for layer_name, v in block.items():
if 'pool' in layer_name:
layer = nn.MaxPool2D(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2D(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(('relu_' + layer_name, nn.ReLU()))
layers = tuple(layers)
return nn.Sequential(*layers)
def transform(self, orgimg: np.ndarray, scale_search: float = 0.5):
process = self.resize_func(orgimg, scale_search)
imageToTest_padded, pad = self.pad_func(process)
process = self.norm_func(imageToTest_padded)
process = np.ascontiguousarray(np.transpose(process[:, :, :, np.newaxis], (3, 2, 0, 1))).astype("float32")
return process, imageToTest_padded, pad
def forward(self, x: paddle.Tensor):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = paddle.concat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = paddle.concat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = paddle.concat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = paddle.concat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = paddle.concat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
def predict(self, img: Union[str, np.ndarray], save_path: str = "openpose_body", visualization: bool = True):
self.eval()
self.visualization = visualization
if isinstance(img, str):
orgImg = cv2.imread(img)
else:
orgImg = img
data, imageToTest_padded, pad = self.transform(orgImg)
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.forward(paddle.to_tensor(data))
Mconv7_stage6_L1 = Mconv7_stage6_L1.numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.numpy()
heatmap_avg = self.remove_pad(Mconv7_stage6_L2, imageToTest_padded, orgImg, pad)
paf_avg = self.remove_pad(Mconv7_stage6_L1, imageToTest_padded, orgImg, pad)
all_peaks = self.get_peak(heatmap_avg)
connection_all, special_k = self.get_connection(all_peaks, paf_avg, orgImg)
candidate, subset = self.get_candidate(all_peaks, connection_all, special_k)
canvas = copy.deepcopy(orgImg)
canvas = self.draw_pose(canvas, candidate, subset)
if self.visualization:
if not os.path.exists(save_path):
os.mkdir(save_path)
img_name = str(time.time()) + '.png'
save_path = os.path.join(save_path, img_name)
cv2.imwrite(save_path, canvas)
results = {'candidate': candidate, 'subset': subset, 'data': canvas}
return results
@serving
def serving_method(self, images: list, **kwargs):
"""
Run as a service.
"""
images_decode = [P.base64_to_cv2(image) for image in images]
results = self.predict(img=images_decode[0], **kwargs)
final = {}
final['candidate'] = P.cv2_to_base64(results['candidate'])
final['subset'] = P.cv2_to_base64(results['subset'])
final['data'] = P.cv2_to_base64(results['data'])
return final
@runnable
def run_cmd(self, argvs: list):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.predict(img=args.input_path, save_path=args.output_dir, visualization=args.visualization)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument(
'--output_dir', type=str, default='openpose_body', help="The directory to save output images.")
self.arg_config_group.add_argument(
'--visualization', type=bool, default=True, help="whether to save output as images.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")