forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
processor.py
343 lines (276 loc) · 14.2 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import base64
import math
from typing import Callable
import cv2
import numpy as np
from scipy.ndimage import gaussian_filter
class PadDownRight:
"""
Get padding images.
Args:
stride(int): Stride for calculate pad value for edges.
padValue(int): Initialization for new area.
"""
def __init__(self, stride: int = 8, padValue: int = 128):
self.stride = stride
self.padValue = padValue
def __call__(self, img: np.ndarray):
h, w = img.shape[0:2]
pad = 4 * [0]
pad[2] = 0 if (h % self.stride == 0) else self.stride - (h % self.stride) # down
pad[3] = 0 if (w % self.stride == 0) else self.stride - (w % self.stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + self.padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + self.padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + self.padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + self.padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
class RemovePadding:
"""
Remove the padding values.
Args:
stride(int): Scales for resizing the images.
"""
def __init__(self, stride: int = 8):
self.stride = stride
def __call__(self, data: np.ndarray, imageToTest_padded: np.ndarray, oriImg: np.ndarray, pad: list) -> np.ndarray:
heatmap = np.transpose(np.squeeze(data), (1, 2, 0))
heatmap = cv2.resize(heatmap, (0, 0), fx=self.stride, fy=self.stride, interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
return heatmap
class GetPeak:
"""
Get peak values and coordinate from input.
Args:
thresh(float): Threshold value for selecting peak value, default is 0.1.
"""
def __init__(self, thresh=0.1):
self.thresh = thresh
def __call__(self, heatmap: np.ndarray):
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down,
one_heatmap > self.thresh))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i], ) for i in range(len(peak_id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
return all_peaks
class Connection:
"""
Get connection for selected estimation points.
Args:
mapIdx(list): Part Affinity Fields map index, default is None.
limbSeq(list): Peak candidate map index, default is None.
"""
def __init__(self, mapIdx: list = None, limbSeq: list = None):
if mapIdx and limbSeq:
self.mapIdx = mapIdx
self.limbSeq = limbSeq
else:
self.mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
[55, 56], [37, 38], [45, 46]]
self.limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
self.caculate_vector = CalculateVector()
def __call__(self, all_peaks: list, paf_avg: np.ndarray, orgimg: np.ndarray):
connection_all = []
special_k = []
for k in range(len(self.mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in self.mapIdx[k]]]
candA = all_peaks[self.limbSeq[k][0] - 1]
candB = all_peaks[self.limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
if nA != 0 and nB != 0:
connection_candidate = self.caculate_vector(candA, candB, nA, nB, score_mid, orgimg)
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
return connection_all, special_k
class CalculateVector:
"""
Vector decomposition and normalization, refer Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
for more details.
Args:
thresh(float): Threshold value for selecting candidate vector, default is 0.05.
"""
def __init__(self, thresh: float = 0.05):
self.thresh = thresh
def __call__(self, candA: list, candB: list, nA: int, nB: int, score_mid: np.ndarray, oriImg: np.ndarray):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + 1e-5
vec = np.divide(vec, norm)
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=10), \
np.linspace(candA[i][1], candB[j][1], num=10)))
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > self.thresh)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
return connection_candidate
class DrawPose:
"""
Draw Pose estimation results on canvas.
Args:
stickwidth(int): Angle value to draw approximate ellipse curve, default is 4.
"""
def __init__(self, stickwidth: int = 4):
self.stickwidth = stickwidth
self.limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], [10, 11], [2, 12], [12, 13],
[13, 14], [2, 1], [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]]
self.colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0],
[170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255],
[255, 0, 170], [255, 0, 85]]
def __call__(self, canvas: np.ndarray, candidate: np.ndarray, subset: np.ndarray):
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
cv2.circle(canvas, (int(x), int(y)), 4, self.colors[i], thickness=-1)
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(self.limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), self.stickwidth), \
int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, self.colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas
class Candidate:
"""
Select candidate for body pose estimation.
Args:
mapIdx(list): Part Affinity Fields map index, default is None.
limbSeq(list): Peak candidate map index, default is None.
"""
def __init__(self, mapIdx: list = None, limbSeq: list = None):
if mapIdx and limbSeq:
self.mapIdx = mapIdx
self.limbSeq = limbSeq
else:
self.mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
[55, 56], [37, 38], [45, 46]]
self.limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
def __call__(self, all_peaks: list, connection_all: list, special_k: list):
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(self.mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(self.limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
return candidate, subset
class ResizeScaling:
"""Resize images by scaling method.
Args:
target(int): Target image size.
interpolation(Callable): Interpolation method.
"""
def __init__(self, target: int = 368, interpolation: Callable = cv2.INTER_CUBIC):
self.target = target
self.interpolation = interpolation
def __call__(self, img, scale_search):
scale = scale_search * self.target / img.shape[0]
resize_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=self.interpolation)
return resize_img
def cv2_to_base64(image: np.ndarray):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
def base64_to_cv2(b64str: str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data