forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
198 lines (177 loc) · 8.59 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# coding=utf-8
from __future__ import absolute_import
import argparse
import ast
import os
from functools import partial
import numpy as np
import paddle
import paddle.jit
import paddle.static
import yaml
from paddle.inference import Config
from paddle.inference import create_predictor
from .data_feed import reader
from .processor import base64_to_cv2
from .processor import load_label_info
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(name="ssd_mobilenet_v1_pascal",
version="1.2.0",
type="cv/object_detection",
summary="SSD with backbone MobileNet_V1, trained with dataset Pasecal VOC.",
author="paddlepaddle",
author_email="[email protected]")
class SSDMobileNetv1:
def __init__(self):
self.default_pretrained_model_path = os.path.join(self.directory, "ssd_mobilenet_v1_model", "model")
self.label_names = load_label_info(os.path.join(self.directory, "label_file.txt"))
self.model_config = None
self._set_config()
def _set_config(self):
# predictor config setting.
model = self.default_pretrained_model_path+'.pdmodel'
params = self.default_pretrained_model_path+'.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
cpu_config.switch_ir_optim(False)
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0)
self.gpu_predictor = create_predictor(gpu_config)
# model config setting.
if not self.model_config:
with open(os.path.join(self.directory, 'config.yml')) as fp:
self.model_config = yaml.load(fp.read(), Loader=yaml.FullLoader)
self.multi_box_head_config = self.model_config['MultiBoxHead']
self.output_decoder_config = self.model_config['SSDOutputDecoder']
self.mobilenet_config = self.model_config['MobileNet']
def object_detection(self,
paths=None,
images=None,
data=None,
batch_size=1,
use_gpu=False,
output_dir='detection_result',
score_thresh=0.5,
visualization=True):
"""API of Object Detection.
Args:
paths (list[str]): The paths of images.
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]
batch_size (int): batch size.
use_gpu (bool): Whether to use gpu.
output_dir (str): The path to store output images.
visualization (bool): Whether to save image or not.
score_thresh (float): threshold for object detecion.
Returns:
res (list[dict]): The result of coco2017 detecion. keys include 'data', 'save_path', the corresponding value is:
data (dict): the result of object detection, keys include 'left', 'top', 'right', 'bottom', 'label', 'confidence', the corresponding value is:
left (float): The X coordinate of the upper left corner of the bounding box;
top (float): The Y coordinate of the upper left corner of the bounding box;
right (float): The X coordinate of the lower right corner of the bounding box;
bottom (float): The Y coordinate of the lower right corner of the bounding box;
label (str): The label of detection result;
confidence (float): The confidence of detection result.
save_path (str, optional): The path to save output images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
)
paths = paths if paths else list()
if data and 'image' in data:
paths += data['image']
data_reader = partial(reader, paths, images)
batch_reader = paddle.batch(data_reader, batch_size=batch_size)
res = []
for iter_id, feed_data in enumerate(batch_reader()):
feed_data = np.array(feed_data)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(np.array(list(feed_data[:, 0])))
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
output = postprocess(paths=paths,
images=images,
data_out=output_handle,
score_thresh=score_thresh,
label_names=self.label_names,
output_dir=output_dir,
handle_id=iter_id * batch_size,
visualization=visualization)
res.extend(output)
return res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.object_detection(images=images_decode, **kwargs)
return results
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.object_detection(paths=[args.input_path],
batch_size=args.batch_size,
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization,
score_thresh=args.score_thresh)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='detection_result',
help="The directory to save output images.")
self.arg_config_group.add_argument('--visualization',
type=ast.literal_eval,
default=False,
help="whether to save output as images.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
self.arg_input_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
self.arg_input_group.add_argument('--score_thresh',
type=ast.literal_eval,
default=0.5,
help="threshold for object detecion.")