forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
darknet.py
121 lines (105 loc) · 4.79 KB
/
darknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import math
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
__all__ = ['DarkNet']
class DarkNet(object):
"""DarkNet, see https://pjreddie.com/darknet/yolo/
Args:
depth (int): network depth, currently only darknet 53 is supported
norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
norm_decay (float): weight decay for normalization layer weights
get_prediction (bool): whether to get prediction
class_dim (int): number of class while classification
"""
def __init__(self,
depth=53,
norm_type='sync_bn',
norm_decay=0.,
weight_prefix_name='',
get_prediction=False,
class_dim=1000):
assert depth in [53], "unsupported depth value"
self.depth = depth
self.norm_type = norm_type
self.norm_decay = norm_decay
self.depth_cfg = {53: ([1, 2, 8, 8, 4], self.basicblock)}
self.prefix_name = weight_prefix_name
self.class_dim = class_dim
self.get_prediction = get_prediction
def _conv_norm(self, input, ch_out, filter_size, stride, padding, act='leaky', name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
act=None,
param_attr=ParamAttr(name=name + ".conv.weights"),
bias_attr=False)
bn_name = name + ".bn"
bn_param_attr = ParamAttr(regularizer=L2Decay(float(self.norm_decay)), name=bn_name + '.scale')
bn_bias_attr = ParamAttr(regularizer=L2Decay(float(self.norm_decay)), name=bn_name + '.offset')
out = fluid.layers.batch_norm(
input=conv,
act=None,
param_attr=bn_param_attr,
bias_attr=bn_bias_attr,
moving_mean_name=bn_name + '.mean',
moving_variance_name=bn_name + '.var')
# leaky relu here has `alpha` as 0.1, can not be set by
# `act` param in fluid.layers.batch_norm above.
if act == 'leaky':
out = fluid.layers.leaky_relu(x=out, alpha=0.1)
return out
def _downsample(self, input, ch_out, filter_size=3, stride=2, padding=1, name=None):
return self._conv_norm(input, ch_out=ch_out, filter_size=filter_size, stride=stride, padding=padding, name=name)
def basicblock(self, input, ch_out, name=None):
conv1 = self._conv_norm(input, ch_out=ch_out, filter_size=1, stride=1, padding=0, name=name + ".0")
conv2 = self._conv_norm(conv1, ch_out=ch_out * 2, filter_size=3, stride=1, padding=1, name=name + ".1")
out = fluid.layers.elementwise_add(x=input, y=conv2, act=None)
return out
def layer_warp(self, block_func, input, ch_out, count, name=None):
out = block_func(input, ch_out=ch_out, name='{}.0'.format(name))
for j in six.moves.xrange(1, count):
out = block_func(out, ch_out=ch_out, name='{}.{}'.format(name, j))
return out
def __call__(self, input):
"""
Get the backbone of DarkNet, that is output for the 5 stages.
"""
stages, block_func = self.depth_cfg[self.depth]
stages = stages[0:5]
conv = self._conv_norm(
input=input, ch_out=32, filter_size=3, stride=1, padding=1, name=self.prefix_name + "yolo_input")
downsample_ = self._downsample(
input=conv, ch_out=conv.shape[1] * 2, name=self.prefix_name + "yolo_input.downsample")
blocks = []
for i, stage in enumerate(stages):
block = self.layer_warp(
block_func=block_func,
input=downsample_,
ch_out=32 * 2**i,
count=stage,
name=self.prefix_name + "stage.{}".format(i))
blocks.append(block)
if i < len(stages) - 1: # do not downsaple in the last stage
downsample_ = self._downsample(
input=block, ch_out=block.shape[1] * 2, name=self.prefix_name + "stage.{}.downsample".format(i))
if self.get_prediction:
pool = fluid.layers.pool2d(input=block, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=self.class_dim,
param_attr=ParamAttr(initializer=fluid.initializer.Uniform(-stdv, stdv), name='fc_weights'),
bias_attr=ParamAttr(name='fc_offset'))
out = fluid.layers.softmax(out)
return out
else:
return blocks