forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
193 lines (173 loc) · 7.13 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
import ast
import argparse
import os
import numpy as np
import paddle
import paddle.jit
import paddle.static
from paddle.inference import Config, create_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from .processor import get_palette, postprocess, base64_to_cv2, cv2_to_base64
from .data_feed import reader
@moduleinfo(
name="ace2p",
type="CV/semantic-segmentation",
author="baidu-idl",
author_email="",
summary="ACE2P is an image segmentation model for human parsing solution.",
version="1.2.0")
class ACE2P:
def __init__(self):
self.default_pretrained_model_path = os.path.join(
self.directory, "ace2p_human_parsing", "model")
# label list
label_list_file = os.path.join(self.directory, 'label_list.txt')
with open(label_list_file, "r") as file:
content = file.read()
self.label_list = content.split("\n")
# palette used in postprocess
self.palette = get_palette(len(self.label_list))
self._set_config()
def _set_config(self):
"""
predictor config setting
"""
model = self.default_pretrained_model_path+'.pdmodel'
params = self.default_pretrained_model_path+'.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_predictor(gpu_config)
def segmentation(self,
images=None,
paths=None,
data=None,
batch_size=1,
use_gpu=False,
output_dir='ace2p_output',
visualization=False):
"""
API for human parsing.
Args:
images (list[numpy.ndarray]): images data, shape of each is [H, W, C], color space is BGR.
paths (list[str]): The paths of images.
batch_size (int): batch size.
use_gpu (bool): Whether to use gpu.
output_dir (str): The path to store output images.
visualization (bool): Whether to save output images or not.
Returns:
res (list[dict]): The result of human parsing and original path of images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
if data and 'image' in data:
if paths is None:
paths = []
paths += data['image']
# get all data
all_data = []
scale = (473, 473) # size of preprocessed image.
rotation = 0 # rotation angle, used for obtaining affine matrix in preprocess.
for yield_data in reader(images, paths, scale, rotation):
all_data.append(yield_data)
total_num = len(all_data)
loop_num = int(np.ceil(total_num / batch_size))
res = []
for iter_id in range(loop_num):
batch_data = list()
handle_id = iter_id * batch_size
for image_id in range(batch_size):
try:
batch_data.append(all_data[handle_id + image_id])
except:
pass
# feed batch image
batch_image = np.array([data['image'] for data in batch_data])
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(batch_image.astype('float32'))
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
# postprocess one by one
for i in range(len(batch_data)):
out = postprocess(
data_out=output_handle.copy_to_cpu()[i],
org_im=batch_data[i]['org_im'],
org_im_path=batch_data[i]['org_im_path'],
image_info=batch_data[i]['image_info'],
output_dir=output_dir,
visualization=visualization,
palette=self.palette)
res.append(out)
return res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.segmentation(images_decode, **kwargs)
results = [{'data': cv2_to_base64(result['data'])} for result in results]
return results
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.segmentation(
paths=[args.input_path],
batch_size=args.batch_size,
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument(
'--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not")
self.arg_config_group.add_argument(
'--output_dir', type=str, default='ace2p_output', help="The directory to save output images.")
self.arg_config_group.add_argument(
'--visualization', type=ast.literal_eval, default=False, help="whether to save output as images.")
self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")