forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
processor.py
184 lines (149 loc) · 5.73 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import base64
import cv2
import numpy as np
from PIL import Image
__all__ = ['cv2_to_base64', 'base64_to_cv2', 'get_palette', 'postprocess']
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
def check_dir(dir_path):
"""
Create directory to save processed image.
Args:
dir_path (str): directory path to save images.
"""
if not os.path.exists(dir_path):
os.makedirs(dir_path)
elif os.path.isfile(dir_path):
os.remove(dir_path)
os.makedirs(dir_path)
def get_save_image_name(org_im, org_im_path, output_dir):
"""
Get save image name from source image path.
"""
# name prefix of orginal image
org_im_name = os.path.split(org_im_path)[-1]
im_prefix = os.path.splitext(org_im_name)[0]
ext = '.png'
# save image path
save_im_path = os.path.join(output_dir, im_prefix + ext)
if os.path.exists(save_im_path):
save_im_path = os.path.join(output_dir, im_prefix + 'time={}'.format(int(time.time())) + ext)
return save_im_path
def get_direction(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_affine_transform(center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list) and not isinstance(scale, tuple):
print(scale)
scale = np.array([scale, scale])
scale_tmp = scale * 200.0
src_w = scale_tmp[0]
dst_w = output_size[1]
dst_h = output_size[0]
rot_rad = np.pi * rot / 180
src_direction = get_direction([0, src_w * -0.5], rot_rad)
dst_direction = np.array([0, (dst_w - 1) * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_direction + scale_tmp * shift
dst[0, :] = [(dst_w - 1) * 0.5, (dst_h - 1) * 0.5]
dst[1, :] = np.array([(dst_w - 1) * 0.5, (dst_h - 1) * 0.5]) + dst_direction
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def transform_logits(logits, center, scale, width, height, input_size):
trans = get_affine_transform(center, scale, 0, input_size, inv=1)
channel = logits.shape[2]
target_logits = []
for i in range(channel):
target_logit = cv2.warpAffine(
logits[:, :, i],
trans, (int(width), int(height)),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0))
target_logits.append(target_logit)
target_logits = np.stack(target_logits, axis=2)
return target_logits
def get_palette(num_cls):
"""
Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def postprocess(data_out, org_im, org_im_path, image_info, output_dir, visualization, palette):
"""
Postprocess output of network. one image at a time.
Args:
data_out (numpy.ndarray): output of neural network.
org_im (numpy.ndarray): orginal image.
org_im_path (str): path of original image.
image_info (dict): info about the preprocessed image.
output_dir (str): output directory to store image.
visualization (bool): whether to save image or not.
palette (list): The palette to draw.
Returns:
res (list[dict]): keys contain 'path', 'data', the corresponding value is:
path (str): The path of original image.
data (numpy.ndarray): The postprocessed image data, only the alpha channel.
"""
result = dict()
result['path'] = org_im_path
image_center = image_info['image_center']
image_scale = image_info['image_scale']
image_width = image_info['image_width']
image_height = image_info['image_height']
scale = image_info['scale']
data_out = np.squeeze(data_out)
data_out = np.transpose(data_out, [1, 2, 0])
logits_result = transform_logits(data_out, image_center, image_scale, image_width, image_height, scale)
parsing = np.argmax(logits_result, axis=2)
parsing_im = np.asarray(parsing, dtype=np.uint8)
result['data'] = parsing_im
if visualization:
check_dir(output_dir)
save_im_path = get_save_image_name(org_im, org_im_path, output_dir)
parsing_im = Image.fromarray(parsing_im)
parsing_im.putpalette(palette)
parsing_im.save(save_im_path)
return result