forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
291 lines (244 loc) · 11.3 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union, Tuple, List
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub.module.module import moduleinfo
import paddlehub.vision.segmentation_transforms as T
from paddlehub.module.cv_module import ImageSegmentationModule
import hardnet_cityscapes.layers as layers
@moduleinfo(
name="hardnet_cityscapes",
type="CV/semantic_segmentation",
author="paddlepaddle",
author_email="",
summary="Hardnet is a segmentation model trained by PascalVoc.",
version="1.0.0",
meta=ImageSegmentationModule)
class HarDNet(nn.Layer):
"""
[Real Time] The FC-HardDNet 70 implementation based on PaddlePaddle.
The original article refers to
Chao, Ping, et al. "HarDNet: A Low Memory Traffic Network"
(https://arxiv.org/pdf/1909.00948.pdf)
Args:
num_classes (int): The unique number of target classes.
stem_channels (tuple|list, optional): The number of channels before the encoder. Default: (16, 24, 32, 48).
ch_list (tuple|list, optional): The number of channels at each block in the encoder. Default: (64, 96, 160, 224, 320).
grmul (float, optional): The channel multiplying factor in HarDBlock, which is m in the paper. Default: 1.7.
gr (tuple|list, optional): The growth rate in each HarDBlock, which is k in the paper. Default: (10, 16, 18, 24, 32).
n_layers (tuple|list, optional): The number of layers in each HarDBlock. Default: (4, 4, 8, 8, 8).
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes: int = 19,
stem_channels: Tuple[int] = (16, 24, 32, 48),
ch_list: Tuple[int] = (64, 96, 160, 224, 320),
grmul: float = 1.7,
gr: Tuple[int] = (10, 16, 18, 24, 32),
n_layers: Tuple[int] = (4, 4, 8, 8, 8),
align_corners: bool = False,
pretrained: str = None):
super(HarDNet, self).__init__()
self.align_corners = align_corners
self.pretrained = pretrained
encoder_blks_num = len(n_layers)
decoder_blks_num = encoder_blks_num - 1
encoder_in_channels = stem_channels[3]
self.stem = nn.Sequential(
layers.ConvBNReLU(3, stem_channels[0], kernel_size=3, bias_attr=False),
layers.ConvBNReLU(stem_channels[0], stem_channels[1], kernel_size=3, bias_attr=False),
layers.ConvBNReLU(stem_channels[1], stem_channels[2], kernel_size=3, stride=2, bias_attr=False),
layers.ConvBNReLU(stem_channels[2], stem_channels[3], kernel_size=3, bias_attr=False))
self.encoder = Encoder(encoder_blks_num, encoder_in_channels, ch_list, gr, grmul, n_layers)
skip_connection_channels = self.encoder.get_skip_channels()
decoder_in_channels = self.encoder.get_out_channels()
self.decoder = Decoder(decoder_blks_num, decoder_in_channels, skip_connection_channels, gr, grmul, n_layers,
align_corners)
self.cls_head = nn.Conv2D(in_channels=self.decoder.get_out_channels(), out_channels=num_classes, kernel_size=1)
self.transforms = T.Compose([T.Normalize()])
if pretrained is not None:
model_dict = paddle.load(pretrained)
self.set_dict(model_dict)
print("load custom parameters success")
else:
checkpoint = os.path.join(self.directory, 'model.pdparams')
model_dict = paddle.load(checkpoint)
self.set_dict(model_dict)
print("load pretrained parameters success")
def transform(self, img: Union[np.ndarray, str]) -> Union[np.ndarray, str]:
return self.transforms(img)
def forward(self, x: paddle.Tensor) -> List[paddle.Tensor]:
input_shape = paddle.shape(x)[2:]
x = self.stem(x)
x, skip_connections = self.encoder(x)
x = self.decoder(x, skip_connections)
logit = self.cls_head(x)
logit = F.interpolate(logit, size=input_shape, mode="bilinear", align_corners=self.align_corners)
return [logit]
class Encoder(nn.Layer):
"""The Encoder implementation of FC-HardDNet 70.
Args:
n_blocks (int): The number of blocks in the Encoder module.
in_channels (int): The number of input channels.
ch_list (tuple|list): The number of channels at each block in the encoder.
grmul (float): The channel multiplying factor in HarDBlock, which is m in the paper.
gr (tuple|list): The growth rate in each HarDBlock, which is k in the paper.
n_layers (tuple|list): The number of layers in each HarDBlock.
"""
def __init__(self, n_blocks: int, in_channels: int, ch_list: List[int], gr: List[int], grmul: float,
n_layers: List[int]):
super().__init__()
self.skip_connection_channels = []
self.shortcut_layers = []
self.blks = nn.LayerList()
ch = in_channels
for i in range(n_blocks):
blk = HarDBlock(ch, gr[i], grmul, n_layers[i])
ch = blk.get_out_ch()
self.skip_connection_channels.append(ch)
self.blks.append(blk)
if i < n_blocks - 1:
self.shortcut_layers.append(len(self.blks) - 1)
self.blks.append(layers.ConvBNReLU(ch, ch_list[i], kernel_size=1, bias_attr=False))
ch = ch_list[i]
if i < n_blocks - 1:
self.blks.append(nn.AvgPool2D(kernel_size=2, stride=2))
self.out_channels = ch
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
skip_connections = []
for i in range(len(self.blks)):
x = self.blks[i](x)
if i in self.shortcut_layers:
skip_connections.append(x)
return x, skip_connections
def get_skip_channels(self):
return self.skip_connection_channels
def get_out_channels(self):
return self.out_channels
class Decoder(nn.Layer):
"""The Decoder implementation of FC-HardDNet 70.
Args:
n_blocks (int): The number of blocks in the Encoder module.
in_channels (int): The number of input channels.
skip_connection_channels (tuple|list): The channels of shortcut layers in encoder.
grmul (float): The channel multiplying factor in HarDBlock, which is m in the paper.
gr (tuple|list): The growth rate in each HarDBlock, which is k in the paper.
n_layers (tuple|list): The number of layers in each HarDBlock.
"""
def __init__(self,
n_blocks: int,
in_channels: int,
skip_connection_channels: List[paddle.Tensor],
gr: List[int],
grmul: float,
n_layers: List[int],
align_corners: bool = False):
super().__init__()
prev_block_channels = in_channels
self.n_blocks = n_blocks
self.dense_blocks_up = nn.LayerList()
self.conv1x1_up = nn.LayerList()
for i in range(n_blocks - 1, -1, -1):
cur_channels_count = prev_block_channels + skip_connection_channels[i]
conv1x1 = layers.ConvBNReLU(cur_channels_count, cur_channels_count // 2, kernel_size=1, bias_attr=False)
blk = HarDBlock(base_channels=cur_channels_count // 2, growth_rate=gr[i], grmul=grmul, n_layers=n_layers[i])
self.conv1x1_up.append(conv1x1)
self.dense_blocks_up.append(blk)
prev_block_channels = blk.get_out_ch()
self.out_channels = prev_block_channels
self.align_corners = align_corners
def forward(self, x: paddle.Tensor, skip_connections: List[paddle.Tensor]) -> paddle.Tensor:
for i in range(self.n_blocks):
skip = skip_connections.pop()
x = F.interpolate(x, size=paddle.shape(skip)[2:], mode="bilinear", align_corners=self.align_corners)
x = paddle.concat([x, skip], axis=1)
x = self.conv1x1_up[i](x)
x = self.dense_blocks_up[i](x)
return x
def get_out_channels(self):
return self.out_channels
class HarDBlock(nn.Layer):
"""The HarDBlock implementation
Args:
base_channels (int): The base channels.
growth_rate (tuple|list): The growth rate.
grmul (float): The channel multiplying factor.
n_layers (tuple|list): The number of layers.
keepBase (bool, optional): A bool value indicates whether concatenating the first layer. Default: False.
"""
def __init__(self,
base_channels: int,
growth_rate: List[int],
grmul: float,
n_layers: List[int],
keepBase: bool = False):
super().__init__()
self.keepBase = keepBase
self.links = []
layers_ = []
self.out_channels = 0
for i in range(n_layers):
outch, inch, link = get_link(i + 1, base_channels, growth_rate, grmul)
self.links.append(link)
layers_.append(layers.ConvBNReLU(inch, outch, kernel_size=3, bias_attr=False))
if (i % 2 == 0) or (i == n_layers - 1):
self.out_channels += outch
self.layers = nn.LayerList(layers_)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
layers_ = [x]
for layer in range(len(self.layers)):
link = self.links[layer]
tin = []
for i in link:
tin.append(layers_[i])
if len(tin) > 1:
x = paddle.concat(tin, axis=1)
else:
x = tin[0]
out = self.layers[layer](x)
layers_.append(out)
t = len(layers_)
out_ = []
for i in range(t):
if (i == 0 and self.keepBase) or \
(i == t - 1) or (i % 2 == 1):
out_.append(layers_[i])
out = paddle.concat(out_, 1)
return out
def get_out_ch(self):
return self.out_channels
def get_link(layer: int, base_ch: int, growth_rate: List[int], grmul: float) -> Tuple:
if layer == 0:
return base_ch, 0, []
out_channels = growth_rate
link = []
for i in range(10):
dv = 2**i
if layer % dv == 0:
k = layer - dv
link.insert(0, k)
if i > 0:
out_channels *= grmul
out_channels = int(int(out_channels + 1) / 2) * 2
in_channels = 0
for i in link:
ch, _, _ = get_link(i, base_ch, growth_rate, grmul)
in_channels += ch
return out_channels, in_channels, link