forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
151 lines (122 loc) · 5.66 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union, List, Tuple
import paddle
from paddle import nn
import paddle.nn.functional as F
import numpy as np
from paddlehub.module.module import moduleinfo
import paddlehub.vision.segmentation_transforms as T
from paddlehub.module.cv_module import ImageSegmentationModule
import unet_cityscapes.layers as layers
@moduleinfo(
name="unet_cityscapes",
type="CV/semantic_segmentation",
author="paddlepaddle",
author_email="",
summary="Unet is a segmentation model.",
version="1.0.0",
meta=ImageSegmentationModule)
class UNet(nn.Layer):
"""
The UNet implementation based on PaddlePaddle.
The original article refers to
Olaf Ronneberger, et, al. "U-Net: Convolutional Networks for Biomedical Image Segmentation"
(https://arxiv.org/abs/1505.04597).
Args:
num_classes (int): The unique number of target classes.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
use_deconv (bool, optional): A bool value indicates whether using deconvolution in upsampling.
If False, use resize_bilinear. Default: False.
pretrained (str, optional): The path or url of pretrained model for fine tuning. Default: None.
"""
def __init__(self,
num_classes: int = 19,
align_corners: bool = False,
use_deconv: bool = False,
pretrained: str = None):
super(UNet, self).__init__()
self.encode = Encoder()
self.decode = Decoder(align_corners, use_deconv=use_deconv)
self.cls = self.conv = nn.Conv2D(in_channels=64, out_channels=num_classes, kernel_size=3, stride=1, padding=1)
self.transforms = T.Compose([T.Normalize()])
if pretrained is not None:
model_dict = paddle.load(pretrained)
self.set_dict(model_dict)
print("load custom parameters success")
else:
checkpoint = os.path.join(self.directory, 'model.pdparams')
model_dict = paddle.load(checkpoint)
self.set_dict(model_dict)
print("load pretrained parameters success")
def transform(self, img: Union[np.ndarray, str]) -> Union[np.ndarray, str]:
return self.transforms(img)
def forward(self, x: paddle.Tensor) -> List[paddle.Tensor]:
logit_list = []
x, short_cuts = self.encode(x)
x = self.decode(x, short_cuts)
logit = self.cls(x)
logit_list.append(logit)
return logit_list
class Encoder(nn.Layer):
def __init__(self):
super().__init__()
self.double_conv = nn.Sequential(layers.ConvBNReLU(3, 64, 3), layers.ConvBNReLU(64, 64, 3))
down_channels = [[64, 128], [128, 256], [256, 512], [512, 512]]
self.down_sample_list = nn.LayerList([self.down_sampling(channel[0], channel[1]) for channel in down_channels])
def down_sampling(self, in_channels: int, out_channels: int) -> nn.Layer:
modules = []
modules.append(nn.MaxPool2D(kernel_size=2, stride=2))
modules.append(layers.ConvBNReLU(in_channels, out_channels, 3))
modules.append(layers.ConvBNReLU(out_channels, out_channels, 3))
return nn.Sequential(*modules)
def forward(self, x: paddle.Tensor) -> Tuple:
short_cuts = []
x = self.double_conv(x)
for down_sample in self.down_sample_list:
short_cuts.append(x)
x = down_sample(x)
return x, short_cuts
class Decoder(nn.Layer):
def __init__(self, align_corners: bool, use_deconv: bool = False):
super().__init__()
up_channels = [[512, 256], [256, 128], [128, 64], [64, 64]]
self.up_sample_list = nn.LayerList(
[UpSampling(channel[0], channel[1], align_corners, use_deconv) for channel in up_channels])
def forward(self, x: paddle.Tensor, short_cuts: List) -> paddle.Tensor:
for i in range(len(short_cuts)):
x = self.up_sample_list[i](x, short_cuts[-(i + 1)])
return x
class UpSampling(nn.Layer):
def __init__(self, in_channels: int, out_channels: int, align_corners: bool, use_deconv: bool = False):
super().__init__()
self.align_corners = align_corners
self.use_deconv = use_deconv
if self.use_deconv:
self.deconv = nn.Conv2DTranspose(in_channels, out_channels // 2, kernel_size=2, stride=2, padding=0)
in_channels = in_channels + out_channels // 2
else:
in_channels *= 2
self.double_conv = nn.Sequential(
layers.ConvBNReLU(in_channels, out_channels, 3), layers.ConvBNReLU(out_channels, out_channels, 3))
def forward(self, x: paddle.Tensor, short_cut: paddle.Tensor) -> paddle.Tensor:
if self.use_deconv:
x = self.deconv(x)
else:
x = F.interpolate(x, paddle.shape(short_cut)[2:], mode='bilinear', align_corners=self.align_corners)
x = paddle.concat([x, short_cut], axis=1)
x = self.double_conv(x)
return x