Skip to content

Latest commit

 

History

History
79 lines (48 loc) · 2.26 KB

File metadata and controls

79 lines (48 loc) · 2.26 KB

模型概述

主题模型(Topic Model)是以无监督学习的方式对文档的隐含语义结构进行聚类的统计模型,其中SLDA(Sentence-LDA)是主题模型的一种。SLDA是LDA主题模型的扩展,LDA假设每个单词对应一个主题,而SLDA假设每个句子对应一个主题。本Module基于的数据集为百度自建的微博领域数据集。


更多详情请参考SLDA论文

注:该Module由第三方开发者DesmonDay贡献。

SLDA模型 API 说明

infer_doc_topic_distribution(document)

用于推理出文档的主题分布。

参数

  • document(str): 输入文档。

返回

  • results(list): 包含主题分布下各个主题ID和对应的概率分布。其中,list的基本元素为dict,dict的key为主题ID,value为各个主题ID对应的概率。

show_topic_keywords(topic_id, k=10)

用于展示出每个主题下对应的关键词,可配合推理主题分布的API使用。

参数

  • topic_id(int): 主题ID。
  • k(int): 需要知道对应主题的前k个关键词。

返回

  • results(dict): 返回对应文档的前k个关键词,以及各个关键词在文档中的出现概率。

代码示例

这里展示API的使用示例。

import paddlehub as hub

slda_weibo = hub.Module(name="slda_weibo")

topic_dist = slda_weibo.infer_doc_topic_distribution("百度是全球最大的中文搜索引擎、致力于让网民更便捷地获取信息,找到所求。")
# [{'topic id': 874, 'distribution': 0.5}, {'topic id': 1764, 'distribution': 0.5}]

keywords = slda_weibo.show_topic_keywords(topic_id=874)
# {'数据': 0.07850538018570305,
#  '更新': 0.04504777051711974,
#  '出口': 0.023363758946167185,
#  '信息': 0.020567061200812687,
#  '全国': 0.015975367546781145,
#  '双十一': 0.014998636225687216,
#  '地理': 0.013257422965959297,
#  '官方': 0.012913598174463106,
#  '支持': 0.01177359809763076,
#  '说话': 0.011205999070328388}

查看代码

https://github.com/baidu/Familia

依赖

paddlepaddle >= 1.8.2

paddlehub >= 1.8.0

更新历史

  • 1.0.0

    初始发布