forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
451 lines (365 loc) · 16.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
def post_process_context(token_ids, reader, merge=True):
"""Post-process the context sequence."""
context = []
utt = []
for tok_id in token_ids[1:]:
if tok_id == reader.eos_id:
utt = reader.tokenizer.convert_ids_to_tokens(utt)
if merge:
utt = reader.tokenizer.merge_subword(utt)
context.append(utt)
utt = []
else:
utt.append(tok_id)
return context
def post_process_response(token_ids, reader, merge=True):
"""
Post-process the decoded sequence. Truncate from the first
<eos> and remove the <bos> and <eos> tokens currently.
"""
eos_pos = len(token_ids)
for i, tok_id in enumerate(token_ids):
if tok_id == reader.eos_id:
eos_pos = i
break
token_ids = token_ids[1:eos_pos]
response = reader.tokenizer.convert_ids_to_tokens(token_ids)
if merge:
response = reader.tokenizer.merge_subword(response)
return token_ids, response
def get_cross_turn_repetition(context, pred_tokens, eos_idx, is_cn=False):
"""Get cross-turn repetition."""
if len(pred_tokens) == 0:
return 1.0
if is_cn:
context = ["".join(utt) for utt in context]
pred_tokens = "".join(pred_tokens)
pred_tri_grams = set()
for i in range(len(pred_tokens) - 2):
tri_gram = tuple(pred_tokens[i:i + 3])
pred_tri_grams.add(tri_gram)
for utt in context:
for i in range(len(utt) - 2):
tri_gram = tuple(utt[i:i + 3])
if tri_gram in pred_tri_grams:
return 1.0
return 0.0
def get_in_turn_repetition(pred, is_cn=False):
"""Get in-turn repetition."""
if len(pred) == 0:
return 1.0
if isinstance(pred[0], str):
pred = [tok.lower() for tok in pred]
if is_cn:
pred = "".join(pred)
tri_grams = set()
for i in range(len(pred) - 2):
tri_gram = tuple(pred[i:i + 3])
if tri_gram in tri_grams:
return 1.0
tri_grams.add(tri_gram)
return 0.0
class Plato2EncoderLayer(nn.Layer):
def __init__(self, n_head, hidden_size, attn_dropout, act_dropout):
super(Plato2EncoderLayer, self).__init__()
self.self_attn = nn.MultiHeadAttention(hidden_size, n_head, attn_dropout)
self.pre_norm_layer = nn.LayerNorm(hidden_size)
self.post_norm_layer = nn.LayerNorm(hidden_size)
self.fc1 = nn.Linear(hidden_size, hidden_size * 4)
self.fc2 = nn.Linear(hidden_size * 4, hidden_size)
self.dropout_layer = nn.Dropout(act_dropout)
self.gelu_layer = nn.GELU()
def forward(self, x, attn_mask, cache):
query = self.pre_norm_layer(x)
attn_output, new_cache = self.self_attn(query, None, None, attn_mask, cache)
attn_output = self.dropout_layer(attn_output)
attn_output = attn_output + x
ffd_input = self.post_norm_layer(attn_output)
ffd_output = self.fc1(ffd_input)
ffd_output = self.gelu_layer(ffd_output)
ffd_output = self.dropout_layer(ffd_output)
ffd_output = self.fc2(ffd_output)
ffd_output = self.dropout_layer(ffd_output)
out = ffd_output + attn_output
return out, new_cache
def gen_cache(self, key):
return self.self_attn.gen_cache(key)
class Plato2Encoder(nn.Layer):
def __init__(self, vocab_size, type_size, max_position_seq_len, num_layers, n_head, hidden_size, attn_dropout,
act_dropout):
super(Plato2Encoder, self).__init__()
self.n_head = n_head
self.word_embedding_layer = nn.Embedding(vocab_size, hidden_size)
self.sent_embedding_layer = nn.Embedding(type_size, hidden_size)
self.pos_embedding_layer = nn.Embedding(max_position_seq_len, hidden_size)
self.encoder_layers = []
for i in range(num_layers):
encoder_layer = Plato2EncoderLayer(n_head, hidden_size, attn_dropout, act_dropout)
self.encoder_layers.append(encoder_layer)
self.add_sublayer('layers.' + str(i), encoder_layer)
self.post_encoder_layer_norm = nn.LayerNorm(hidden_size)
self.dropout_layer = nn.Dropout(act_dropout)
def forward(self, caches, token_ids, type_ids, pos_ids, generation_mask, aux_emb=None):
out, self_attn_mask = self.gen_input(token_ids, type_ids, pos_ids, generation_mask, aux_emb)
new_caches = []
for i, encoder_layer in enumerate(self.encoder_layers):
out, new_cache = encoder_layer(out, self_attn_mask, caches[i])
new_caches.append(new_cache)
enc_output = self.post_encoder_layer_norm(out)
return enc_output, new_caches
def gen_input(self, token_ids, type_ids, pos_ids, input_mask, aux_emb=None):
token_emb_out = self.word_embedding_layer(token_ids)
type_emb_out = self.sent_embedding_layer(type_ids)
pos_emb_out = self.pos_embedding_layer(pos_ids)
emb_out = token_emb_out + type_emb_out + pos_emb_out
# auxiliary memory embeddings
if aux_emb is not None:
emb_out = paddle.concat([aux_emb, emb_out], axis=1)
emb_out = self.dropout_layer(emb_out)
# generate n-head self-attention mask
self_attn_mask = input_mask
self_attn_mask = paddle.scale(x=self_attn_mask, scale=1e4, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = paddle.stack(x=[self_attn_mask] * self.n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
return emb_out, n_head_self_attn_mask
def gen_caches(self, key):
caches = [encoder_layer.gen_cache(key) for encoder_layer in self.encoder_layers]
return caches
class NSP(nn.Layer):
def __init__(self, vocab_size, type_size, max_position_seq_len, num_layers, n_head, hidden_size, attn_dropout,
act_dropout):
super(NSP, self).__init__()
self.n_head = n_head
self.hidden_size = hidden_size
self.word_embedding_layer = nn.Embedding(vocab_size, hidden_size)
self.sent_embedding_layer = nn.Embedding(type_size, hidden_size)
self.pos_embedding_layer = nn.Embedding(max_position_seq_len, hidden_size)
encoder_layer = nn.TransformerEncoderLayer(hidden_size, n_head, hidden_size * 4, act_dropout, 'gelu',
attn_dropout, act_dropout, 'True')
encoder_norm = nn.LayerNorm(hidden_size)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers, encoder_norm)
self.fc1 = nn.Linear(hidden_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, 2)
self.dropout_layer = nn.Dropout(act_dropout)
self.tanh_layer = nn.Tanh()
self.softmax = nn.Softmax()
def forward(self, inputs):
token_ids = inputs['token_ids']
type_ids = inputs['type_ids']
pos_ids = inputs['pos_ids']
attention_mask = inputs['attention_mask']
label_pos = inputs["label_pos"]
out, self_attn_mask = self.gen_input(token_ids, type_ids, pos_ids, attention_mask)
# [-1, seq_len, hidden_size]
enc_out = self.encoder(out, self_attn_mask)
enc_out = paddle.reshape(enc_out, [-1, self.hidden_size])
label_pos = paddle.cast(label_pos, 'int64')
out = paddle.gather(enc_out, label_pos)
pooled_out = self.fc1(out)
pooled_out = self.tanh_layer(pooled_out)
# [-1, 2]
logits = self.fc2(pooled_out)
probs = self.softmax(logits)
return probs
def gen_input(self, token_ids, type_ids, pos_ids, input_mask, aux_emb=None):
token_emb_out = self.word_embedding_layer(token_ids)
type_emb_out = self.sent_embedding_layer(type_ids)
pos_emb_out = self.pos_embedding_layer(pos_ids)
emb_out = token_emb_out + type_emb_out + pos_emb_out
# auxiliary memory embeddings
if aux_emb is not None:
emb_out = paddle.concat([aux_emb, emb_out], axis=1)
emb_out = self.dropout_layer(emb_out)
# generate n-head self-attention mask
self_attn_mask = input_mask
self_attn_mask = paddle.scale(x=self_attn_mask, scale=1e4, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = paddle.stack(x=[self_attn_mask] * self.n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
return emb_out, n_head_self_attn_mask
class Plato2InferModel(nn.Layer):
def __init__(self,
nsp_reader,
num_layers,
n_head,
hidden_size,
vocab_size=8001,
type_size=2,
latent_type_size=20,
max_position_seq_len=256,
act_dropout=0.1,
attn_dropout=0.1,
max_dec_len=64,
min_dec_len=1,
topk=10):
super(Plato2InferModel, self).__init__()
self.nsp_reader = nsp_reader
self.num_layers = num_layers
self.latent_type_size = latent_type_size
self.max_dec_len = max_dec_len
self.min_dec_len = min_dec_len
self.topk = topk
self.unk_id = 0
self.bos_id = 1
self.eos_id = 2
self.mask_id = 8000
self.after_eos = paddle.ones([vocab_size]) * -1e9
self.after_eos[self.eos_id] = 0
self.is_cn = False
self.batch_size = 1
self.latent_weight = paddle.create_parameter([hidden_size, latent_type_size], 'float32')
self.plato2_encoder = Plato2Encoder(vocab_size, type_size, max_position_seq_len, num_layers, n_head,
hidden_size, attn_dropout, act_dropout)
self.logits_fc_layer = nn.Linear(hidden_size, hidden_size)
self.logits_layer_norm = nn.LayerNorm(hidden_size)
self.logits_bias = paddle.create_parameter([vocab_size], 'float32', is_bias=True)
self.nsp_predictor = NSP(vocab_size, type_size, max_position_seq_len, num_layers, n_head, hidden_size,
attn_dropout, act_dropout)
self.gelu_layer = nn.GELU()
self.softmax = nn.Softmax()
@paddle.no_grad()
def forward(self, inputs):
token_ids = inputs['token_ids']
type_ids = inputs['type_ids']
pos_ids = inputs['pos_ids']
generation_mask = inputs['generation_mask']
latent_id = inputs['latent_id']
data_id = inputs['data_id']
# [-1, 1, latent_type_size]
latent_id = F.one_hot(latent_id, self.latent_type_size)
# [-1, 1, hidden_size]
latent_emb = paddle.matmul(latent_id, self.latent_weight, transpose_y=True)
caches = self.plato2_encoder.gen_caches(token_ids)
# [-1, seq_len + 1, hidden_size]
enc_out, new_caches = self.plato2_encoder(caches, token_ids, type_ids, pos_ids, generation_mask, latent_emb)
pred_ids = self.decode(inputs, new_caches)
nsp_inputs = self.gen_nsp_input(token_ids, pred_ids)
# [-1, 2]
probs = self.nsp_predictor(nsp_inputs)
return self.get_results(data_id, token_ids, pred_ids, probs)
def decode(self, inputs, caches):
tgt_ids = inputs['tgt_ids']
tgt_pos = inputs['tgt_pos']
tgt_generation_mask = inputs['tgt_generation_mask']
predictions = tgt_ids
# TODO
step = 0
while step < self.max_dec_len:
# [-1, 1]
append_mask = paddle.cast(tgt_ids != self.eos_id, dtype=tgt_generation_mask.dtype)
tgt_generation_mask = paddle.concat([tgt_generation_mask, paddle.unsqueeze(append_mask, 1)], axis=-1)
tgt_sent = paddle.ones([tgt_generation_mask.shape[0], 1], dtype=tgt_ids.dtype)
# [-1, 1, hidden_size]
out, caches = self.plato2_encoder(caches, tgt_ids, tgt_sent, tgt_pos, tgt_generation_mask)
out = paddle.squeeze(out, axis=1)
# [-1, hidden_size]
trans = self.logits_fc_layer(out)
trans = self.gelu_layer(trans)
trans = self.logits_layer_norm(trans)
# [-1, vocab_size]
logits = paddle.matmul(trans, self.plato2_encoder.word_embedding_layer.weight,
transpose_y=True) + self.logits_bias
logits[:, self.unk_id] = -1e9
logits[:, self.bos_id] = -1e9
logits[:, self.mask_id] = -1e9
if step < self.min_dec_len:
logits[:, self.eos_id] = -1e9
logits = logits * append_mask + (1 - append_mask) * self.after_eos
probs = self.softmax(logits)
# [-1, topk]
topk_probs, _ = paddle.topk(probs, k=self.topk)
mask = paddle.cast(probs >= topk_probs[:, -1:], 'float32')
sums = paddle.sum(topk_probs, axis=-1, keepdim=True)
new_probs = probs * mask / sums
# [-1, 1]
sampling_ids = paddle.multinomial(new_probs)
step = step + 1
tgt_ids = sampling_ids
tgt_pos = tgt_pos + 1
predictions = paddle.concat([predictions, tgt_ids], axis=1)
return predictions
def gen_nsp_input(self, token_ids, pred_ids):
token_ids = token_ids.numpy()
pred_ids = pred_ids.numpy()
def __reader__():
headers = ["src", "tgt", "data_id"]
Example = namedtuple("Example", headers)
for i, (raw, pred) in enumerate(zip(token_ids, pred_ids)):
context = post_process_context(raw, self.nsp_reader, merge=False)
_, response = post_process_response(pred, self.nsp_reader, merge=False)
context_tokenized_input = " [SEP] ".join(" ".join(utt) for utt in context)
response_tokenized_input = " ".join(response)
example = Example(src=context_tokenized_input, tgt=response_tokenized_input, data_id=i)
data = self.nsp_reader._convert_example_to_record(example, is_infer=True)
yield data
return
generator = self.nsp_reader.data_generator(
reader=__reader__,
is_infer=True,
phase="test",
)
inputs = next(generator())
#print('\nnsp_inputs:')
for key in inputs:
inputs[key] = paddle.to_tensor(inputs[key])
if key in ['token_ids', 'type_ids', 'pos_ids']:
inputs[key] = paddle.squeeze(inputs[key], axis=-1)
#print(key, inputs[key].shape)
#print(inputs[key])
return inputs
def get_results(self, data_id, token_ids, pred_ids, probs):
data_id = data_id.numpy()
token_ids = token_ids.numpy()
pred_ids = pred_ids.numpy()
probs = probs.numpy()
infos = []
for raw, pred, prob in zip(token_ids, pred_ids, probs):
tokens = post_process_context(raw, self.nsp_reader)
pred_token_ids, pred_tokens = post_process_response(pred, self.nsp_reader)
info = {}
info['response'] = ' '.join(pred_tokens)
cross_turn_repetition = get_cross_turn_repetition(tokens, pred_tokens, self.nsp_reader.eos_id, self.is_cn)
in_turn_repetition = max(get_in_turn_repetition(pred_tokens, self.is_cn),
get_in_turn_repetition(pred_token_ids))
info['score'] = float(prob[1])
if len(pred_token_ids) >= self.max_dec_len:
info['score'] -= 1e3
elif cross_turn_repetition > 0:
info['score'] -= 1e3
elif in_turn_repetition > 0:
info['score'] -= 1e3
infos.append(info)
results = []
pre_idx = 0
sample = []
for idx, info in zip(data_id, infos):
if idx != pre_idx:
sample = sorted(sample, key=lambda info: -info["score"])
result = sample[0]
result['data_id'] = pre_idx
results.apeend(result)
sample = []
pre_idx = idx
sample.append(info)
if sample:
sample = sorted(sample, key=lambda info: -info["score"])
result = sample[0]
result['data_id'] = pre_idx
results.append(result)
return results