forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tracker.py
259 lines (229 loc) · 10.8 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import glob
import paddle
import numpy as np
import collections
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
import ppdet.utils.stats as stats
from ppdet.engine.callbacks import Callback, ComposeCallback
from ppdet.utils.logger import setup_logger
from .dataset import MOTVideoStream, MOTImageStream
from .utils import Timer
from .modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
from .modeling.mot import visualization as mot_vis
logger = setup_logger(__name__)
class StreamTracker(object):
def __init__(self, cfg, mode='eval'):
self.cfg = cfg
assert mode.lower() in ['test', 'eval'], \
"mode should be 'test' or 'eval'"
self.mode = mode.lower()
self.optimizer = None
# build model
with paddle.no_grad():
self.model = create(cfg.architecture)
self.status = {}
self.start_epoch = 0
def load_weights_jde(self, weights):
load_weight(self.model, weights, self.optimizer)
def _eval_seq_jde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)
timer = Timer()
results = []
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
for step_id, data in enumerate(dataloader):
#print('data', data)
self.status['step_id'] = step_id
if frame_id % 40 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
# forward
timer.tic()
pred_dets, pred_embs = self.model(data)
online_targets = self.model.tracker.update(pred_dets, pred_embs)
online_tlwhs, online_ids = [], []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tscore < draw_threshold: continue
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
self.save_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image,
save_dir)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_jde_single_image(self, iterator, save_dir=None, show_image=False, draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
results = []
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
timer = Timer()
while True:
try:
data = next(iterator)
timer.tic()
pred_dets, pred_embs = self.model(data)
online_targets = self.model.tracker.update(pred_dets, pred_embs)
online_tlwhs, online_ids = [], []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tscore < draw_threshold: continue
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
self.save_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time,
show_image, save_dir)
frame_id += 1
yield results, frame_id
except StopIteration as e:
return
def imagestream_predict(self, output_dir, data_type='mot', model_type='JDE', visualization=True,
draw_threshold=0.5):
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in ['mot', 'kitti'], \
"data_type should be 'mot' or 'kitti'"
assert model_type in ['JDE', 'FairMOT'], \
"model_type should be 'JDE', or 'FairMOT'"
seq = 'inputimages'
self.dataset = MOTImageStream(keep_ori_im=True)
save_dir = os.path.join(output_dir, 'mot_outputs', seq) if visualization else None
self.dataloader = create('MOTVideoStreamReader')(self.dataset, 0)
self.dataloader_iter = iter(self.dataloader)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
if model_type in ['JDE', 'FairMOT']:
generator = self._eval_seq_jde_single_image(
self.dataloader_iter, save_dir=save_dir, draw_threshold=draw_threshold)
else:
raise ValueError(model_type)
yield
results = []
while True:
try:
results, nf = next(generator)
yield results
except StopIteration as e:
self.write_mot_results(result_filename, results, data_type)
return
def videostream_predict(self,
video_stream,
output_dir,
data_type='mot',
model_type='JDE',
visualization=True,
draw_threshold=0.5):
assert video_stream is not None, \
"--video_stream should be set."
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in ['mot', 'kitti'], \
"data_type should be 'mot' or 'kitti'"
assert model_type in ['JDE', 'FairMOT'], \
"model_type should be 'JDE', or 'FairMOT'"
seq = os.path.splitext(os.path.basename(video_stream))[0]
self.dataset = MOTVideoStream(video_stream, keep_ori_im=True)
save_dir = os.path.join(output_dir, 'mot_outputs', seq) if visualization else None
dataloader = create('MOTVideoStreamReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
with paddle.no_grad():
if model_type in ['JDE', 'FairMOT']:
results, nf, ta, tc = self._eval_seq_jde(dataloader, save_dir=save_dir, draw_threshold=draw_threshold)
else:
raise ValueError(model_type)
self.write_mot_results(result_filename, results, data_type)
if visualization:
#### Save using ffmpeg
#output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq))
#cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format(
# save_dir, output_video_path)
#os.system(cmd_str)
#### Save using opencv
output_video_path = os.path.join(save_dir, '..', '{}_vis.avi'.format(seq))
imgnames = glob.glob(os.path.join(save_dir, '*.jpg'))
if len(imgnames) == 0:
logger.info('No output images to save for video')
return
img = cv2.imread(os.path.join(save_dir, '00000.jpg'))
video_writer = cv2.VideoWriter(
output_video_path,
apiPreference=0,
fourcc=cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
fps=30,
frameSize=(img.shape[1], img.shape[0]))
for i in range(len(imgnames)):
imgpath = os.path.join(save_dir, '{:05d}.jpg'.format(i))
img = cv2.imread(imgpath)
video_writer.write(img)
video_writer.release()
logger.info('Save video in {}'.format(output_video_path))
def write_mot_results(self, filename, results, data_type='mot'):
if data_type in ['mot', 'mcmot', 'lab']:
save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, tlwhs, tscores, track_ids in results:
if data_type == 'kitti':
frame_id -= 1
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(
frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=score)
f.write(line)
logger.info('MOT results save in {}'.format(filename))
def save_results(self, data, frame_id, online_ids, online_tlwhs, online_scores, average_time, show_image, save_dir):
if show_image or save_dir is not None:
assert 'ori_image' in data
img0 = data['ori_image'].numpy()[0]
online_im = mot_vis.plot_tracking(
img0, online_tlwhs, online_ids, online_scores, frame_id=frame_id, fps=1. / average_time)
if show_image:
cv2.imshow('online_im', online_im)
if save_dir is not None:
cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)