From c3e31143efde7db81ce12fbd73be74be375270ba Mon Sep 17 00:00:00 2001 From: Tyler Fox Date: Fri, 14 Nov 2014 11:27:23 -0800 Subject: [PATCH] Make easing function block return types explicit This prevents issues where the return type is inferred to be a double or float, instead of CGFloat. --- Source/INTUEasingFunctions.m | 62 ++++++++++++++++++------------------ 1 file changed, 31 insertions(+), 31 deletions(-) diff --git a/Source/INTUEasingFunctions.m b/Source/INTUEasingFunctions.m index 8b1853c..469abf8 100644 --- a/Source/INTUEasingFunctions.m +++ b/Source/INTUEasingFunctions.m @@ -27,39 +27,39 @@ #include // Modeled after the line y = x -INTUEasingFunction INTULinear = ^(CGFloat p) { +INTUEasingFunction INTULinear = ^CGFloat (CGFloat p) { return p; }; // Modeled after quarter-cycle of sine wave -INTUEasingFunction INTUEaseInSine = ^(CGFloat p) { +INTUEasingFunction INTUEaseInSine = ^CGFloat (CGFloat p) { return sin((p - 1) * M_PI_2) + 1; }; // Modeled after quarter-cycle of sine wave (different phase) -INTUEasingFunction INTUEaseOutSine = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutSine = ^CGFloat (CGFloat p) { return sin(p * M_PI_2); }; // Modeled after half sine wave -INTUEasingFunction INTUEaseInOutSine = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutSine = ^CGFloat (CGFloat p) { return 0.5 * (1 - cos(p * M_PI)); }; // Modeled after the parabola y = x^2 -INTUEasingFunction INTUEaseInQuadratic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInQuadratic = ^CGFloat (CGFloat p) { return p * p; }; // Modeled after the parabola y = -x^2 + 2x -INTUEasingFunction INTUEaseOutQuadratic = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutQuadratic = ^CGFloat (CGFloat p) { return -(p * (p - 2)); }; // Modeled after the piecewise quadratic // y = (1/2)((2x)^2) ; [0, 0.5) // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutQuadratic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutQuadratic = ^CGFloat (CGFloat p) { if(p < 0.5) { return 2 * p * p; @@ -71,12 +71,12 @@ }; // Modeled after the cubic y = x^3 -INTUEasingFunction INTUEaseInCubic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInCubic = ^CGFloat (CGFloat p) { return p * p * p; }; // Modeled after the cubic y = (x - 1)^3 + 1 -INTUEasingFunction INTUEaseOutCubic = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutCubic = ^CGFloat (CGFloat p) { CGFloat f = (p - 1); return f * f * f + 1; }; @@ -84,7 +84,7 @@ // Modeled after the piecewise cubic // y = (1/2)((2x)^3) ; [0, 0.5) // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutCubic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutCubic = ^CGFloat (CGFloat p) { if(p < 0.5) { return 4 * p * p * p; @@ -97,12 +97,12 @@ }; // Modeled after the quartic x^4 -INTUEasingFunction INTUEaseInQuartic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInQuartic = ^CGFloat (CGFloat p) { return p * p * p * p; }; // Modeled after the quartic y = 1 - (x - 1)^4 -INTUEasingFunction INTUEaseOutQuartic = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutQuartic = ^CGFloat (CGFloat p) { CGFloat f = (p - 1); return f * f * f * (1 - p) + 1; }; @@ -110,7 +110,7 @@ // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutQuartic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutQuartic = ^CGFloat (CGFloat p) { if(p < 0.5) { return 8 * p * p * p * p; @@ -123,12 +123,12 @@ }; // Modeled after the quintic y = x^5 -INTUEasingFunction INTUEaseInQuintic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInQuintic = ^CGFloat (CGFloat p) { return p * p * p * p * p; }; // Modeled after the quintic y = (x - 1)^5 + 1 -INTUEasingFunction INTUEaseOutQuintic = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutQuintic = ^CGFloat (CGFloat p) { CGFloat f = (p - 1); return f * f * f * f * f + 1; }; @@ -136,7 +136,7 @@ // Modeled after the piecewise quintic // y = (1/2)((2x)^5) ; [0, 0.5) // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutQuintic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutQuintic = ^CGFloat (CGFloat p) { if(p < 0.5) { return 16 * p * p * p * p * p; @@ -149,19 +149,19 @@ }; // Modeled after the exponential function y = 2^(10(x - 1)) -INTUEasingFunction INTUEaseInExponential = ^(CGFloat p) { +INTUEasingFunction INTUEaseInExponential = ^CGFloat (CGFloat p) { return (p == 0.0) ? p : pow(2, 10 * (p - 1)); }; // Modeled after the exponential function y = -2^(-10x) + 1 -INTUEasingFunction INTUEaseOutExponential = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutExponential = ^CGFloat (CGFloat p) { return (p == 1.0) ? p : 1 - pow(2, -10 * p); }; // Modeled after the piecewise exponential // y = (1/2)2^(10(2x - 1)) ; [0,0.5) // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] -INTUEasingFunction INTUEaseInOutExponential = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutExponential = ^CGFloat (CGFloat p) { if(p == 0.0 || p == 1.0) return p; if(p < 0.5) @@ -175,19 +175,19 @@ }; // Modeled after shifted quadrant IV of unit circle -INTUEasingFunction INTUEaseInCircular = ^(CGFloat p) { +INTUEasingFunction INTUEaseInCircular = ^CGFloat (CGFloat p) { return 1 - sqrt(1 - (p * p)); }; // Modeled after shifted quadrant II of unit circle -INTUEasingFunction INTUEaseOutCircular = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutCircular = ^CGFloat (CGFloat p) { return sqrt((2 - p) * p); }; // Modeled after the piecewise circular function // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutCircular = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutCircular = ^CGFloat (CGFloat p) { if(p < 0.5) { return 0.5 * (1 - sqrt(1 - 4 * (p * p))); @@ -199,12 +199,12 @@ }; // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) -INTUEasingFunction INTUEaseInBack = ^(CGFloat p) { +INTUEasingFunction INTUEaseInBack = ^CGFloat (CGFloat p) { return p * p * p - p * sin(p * M_PI); }; // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) -INTUEasingFunction INTUEaseOutBack = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutBack = ^CGFloat (CGFloat p) { CGFloat f = (1 - p); return 1 - (f * f * f - f * sin(f * M_PI)); }; @@ -212,7 +212,7 @@ // Modeled after the piecewise overshooting cubic function: // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutBack = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutBack = ^CGFloat (CGFloat p) { if(p < 0.5) { CGFloat f = 2 * p; @@ -226,19 +226,19 @@ }; // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) -INTUEasingFunction INTUEaseInElastic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInElastic = ^CGFloat (CGFloat p) { return sin(13 * M_PI_2 * p) * pow(2, 10 * (p - 1)); }; // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1 -INTUEasingFunction INTUEaseOutElastic = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutElastic = ^CGFloat (CGFloat p) { return sin(-13 * M_PI_2 * (p + 1)) * pow(2, -10 * p) + 1; }; // Modeled after the piecewise exponentially-damped sine wave: // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] -INTUEasingFunction INTUEaseInOutElastic = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutElastic = ^CGFloat (CGFloat p) { if(p < 0.5) { return 0.5 * sin(13 * M_PI_2 * (2 * p)) * pow(2, 10 * ((2 * p) - 1)); @@ -249,11 +249,11 @@ } }; -INTUEasingFunction INTUEaseInBounce = ^(CGFloat p) { +INTUEasingFunction INTUEaseInBounce = ^CGFloat (CGFloat p) { return 1 - INTUEaseOutBounce(1 - p); }; -INTUEasingFunction INTUEaseOutBounce = ^(CGFloat p) { +INTUEasingFunction INTUEaseOutBounce = ^CGFloat (CGFloat p) { if(p < 4/11.0) { return (121 * p * p)/16.0; @@ -272,7 +272,7 @@ } }; -INTUEasingFunction INTUEaseInOutBounce = ^(CGFloat p) { +INTUEasingFunction INTUEaseInOutBounce = ^CGFloat (CGFloat p) { if(p < 0.5) { return 0.5 * INTUEaseInBounce(p*2);