-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstall.sh
85 lines (65 loc) · 2.02 KB
/
install.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/bin/bash
############ GENERAL ENV SETUP ############
echo New Environment Name:
read envname
echo Creating new conda environment $envname
conda create -n $envname python=3.8 -y -q
eval "$(conda shell.bash hook)"
conda activate $envname
echo
echo Activating $envname
if [[ "$CONDA_DEFAULT_ENV" != "$envname" ]]
then
echo Failed to activate conda environment.
exit 1
fi
############ PYTHON ############
echo Install mamba
conda install mamba -c conda-forge -y -q
############ REQUIRED DEPENDENCIES (PYBULLET) ############
echo Installing dependencies...
mamba install -c conda-forge hydra-core -y -q
# Mujoco System Dependencies
mamba install -c conda-forge glew patchelf -y -q
mamba install conda-build -y -q
# Set Conda Env Variables
conda env config vars set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin:/usr/lib/nvidia
conda env config vars set LD_PRELOAD=$LD_PRELOAD:$CONDA_PREFIX/lib/libGLEW.so
# Activate Mujoco Py Env Variables
conda activate $envname
# Install MujocoPy
pip install mujoco-py
# Install other PIP Dependencies
pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116
pip install setuptools==65.5.0
pip install wheel==0.38.4
pip install dm-control==0.0.403778684
pip install gym==0.21.0
pip install termcolor
pip install wandb
pip install tikzplotlib
pip install einops
pip install torchdiffeq
pip install gin-config
pip install pybullet
pip install -U scikit-learn
pip install torchsde
###Install Dependencies for D3IL-Sim
#conda install -c conda-forge opencv pinocchio -y -q
#conda install -c open3d-admin open3d -y -q
#pip install mujoco
echo Clone Relay policy learning
git clone https://github.com/google-research/relay-policy-learning
echo Clone BESO
git clone https://github.com/intuitive-robots/beso.git
echo Done installing all necessary packages. Please follow the next steps mentioned on the readme
pip install -e .
cd beso
pip install -e .
echo
echo
echo Successfully installed.
echo
echo To activate your environment call:
echo conda activate $envname
exit 0